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he Financial Risk Manager Handbook provides the core body of knowledge
for financial risk managers. Risk management has evolved rapidly over the past
decade and has become an indispensable function in many institutions.

This Handbook was originally written to provide support for candidates tak-
ing the FRM examination administered by GARP. As such, it reviews a wide
variety of practical topics in a consistent and systematic tashion. It covers quan-
titative methods and capital markets, as well as market, credit, operational, and
integrated risk management. It also discusses regulatory and legal issues essential
to risk professionals. )

This edition has been thoroughly updated to reflect recent developments in
financial markets, The unprecedented losses incurred by many institutions have
raised questions about risk management practices. These issues are now addressed
in various parts of the book, which also include lessons from recent regulatory
reports. The securitization process and structured credit products are critically
examined. A new chapter on liquidity risk has been added, given the importance
of this risk during the recent crisis. Finally, this Handbook incorporates the latest
questions from the FRM examinations.

Modern risk management systems cut across the entire organization. This
breadth is reflected in the subjects covered in this Handbook. The book was de-
signed to be self-contained, but only for readers who already have some exposure
to financial markets. To reap maximum benefit from this book, readers should
have taken the equivalent of an MBA-level class on investments.

Finally, I want to acknowledge the help received in writing this Handbook.
In particular, I thank the numerous readers who shared comments on previous
editions. Any comment or suggestion for improvement will be welcome. This
feedback will help us to maintain the high quality of the FRM designation.

Philippe Jorion
Febrieary 2009






Philippe Jorion is a Professor of Finance at the Paul Merage School of Business at
the University of California at Irvine. He has also taught at Columbia University,
Northwestern University, the University of Chicago, and the University of British
Columbia. He holds an M.B.A. and a Ph.D. from the University of Chicago and
a degree in engineering from the University of Brussels. He is also a managing
director at Pacific Alternative Asset Management Company (PAAMCQ), a global
fund of hedge funds.

Dr. Jorion is the author of more than 90 publications directed to academics
and practitioners on the topics of risk management and international finance. He
has also written a number of books, including Big Bets Gone Bad: Derivatives and
Bankruptcy in Orange County, the first account of the largest municipal failure
in U.S. history, and Value at Risk: The New Benchmark for Managing Financial
Risk, which is aimed at finance practitioners and has become an industry standa-d.

Philippe Jorion is a frequent speaker at academic and professional conferences.
He is on the editorial board of a number of finance journals and was editor in
chief of the Journal of Risk.






ounded in 1996, the Global Association of Risk Professionals (GARP) 1s the
leading not-for-profit association for world-class financial risk certification,
education, and training with close to 100,000 members representing 167 countries.
With deep expertise and a strong reputation, GARP sets global standards and
creates risk management programs valued worldwide. All GARP programs are
developed with input from experts around the world to ensure that concepts and
content reflect globally accepted practices.
GARP is dedicated to advancing the risk profession. For more information
about GARP, please visit www.garp.com:

FINANCIAL RISK MANAGER (FRM®) CERTIFIGATION _

The benchmark FRM designation is the globally accepted risk management certifi-
cation for financial risk professionals. The FRM objectively measures competency
in the risk management profession based on globally accepted standards. With a
compound annual growth rate of 25 percent over the past seven years, the FRM
program has experienced significant growth.in every financial center around the
world. Now 16,000+ individuals hold the FRM designation in gver 90 coun-
teies. In addition, organizations with five or more FRM registrants grew from
105 in 2003 to 424 in 2008, further demonsurating the FRM program’s global
acceptance.

The FRM Continuing Professional Education (CPE) program, to be offered
starting in 2009 exclusively for certified FRM holders, provides the perspective
and framework necded to further develop competencies in the ever-evolving field
of risk management.

For more information about the FRM program, please visit www.garp.com/
frmexam.

OTHER GARP CERTIFIGATIONS

Internationa! Ceptificate in Bankiag Risk
and Regulation (ICBRR)

The ICBRR allows individuals to expand their knowledge and understanding of
the various risks, regulations, and supervisory requirements banks must face in
today’s economy, with emphasis on the Basel II Accord. This certificate is ideal
for employees who are not professional risk managers but who have a strong need
to understand risk concepts. The ICBRR program is designed for employees in

il
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nonrisk departments such as internal audit, accounting, information technology
{IT), legal, compliance, and sales, acknowledging that everyone in the organization
1s a risk manager!

Gertificate in Enerpy Risk Management

The Certificate in Energy Risk Management provides individuals with a com-
prehensive and cross-product understanding of the physical and financial market-
places relating to crude oil, natural gas, liquefied natural gas, and electricity/power.
This program is valuable for anyone working in or servicing the energy field and
requiring an-understanding of the physical and financial markets, how they inter-
relate,and the risks mvolvcd This program will launch in 2Q 2009.

Certificate i .in Risk Management for Islamic
" Finangial Insutufluns

This certificate is under development by a practice oversight committee of Islamic
finance experts from around the globe. The program will cover the risk manage-
ment methodologies specific.to Sharia’d-compliant financial products and will be
the only one of its kind anywhe.re in the world.

GARP DIGITAL LIBRARY

As the world’s largest digital library dedicated to financial risk management,
the. GARP Digital Library (GDL) is the hub for risk management education and
research, material. The library’s unique iReadings™ allow users to download
individual chapters of books, saving both time and money. There are over 1,000
readings available from 12 different pubhshers The GDL coilection offers readings
to meet the needs of anyone interested in risk management.

For more information, please, visit www.garpdigitallibrary.org.

GARP EVENTS AND NETWORKING

GARP hosts major conventions-throughout the world, where risk professionals
come together to share knowledge, network, and learn from leading experts in
the field. Conventions are bookended with interactive workshops that provide
practical insights and case studies presented by the industry’s leading practitioners.

GARP regional chapters provide an opportunity for financial risk professionals
to network and share new trends and discoveries in risk management. Each one
of our 52 chapters holds several meetings each yvear, in some locations more
often, focusing on issues of importance to the risk management community, either
globally or locally.



ARP’s formal mission is to be the leading professional association for financial

risk managers, managed by and for its members and dedicated to the advance-
ment of the risk profession through education, training, and the promotion of best
practices globally. As a part of delivering on that mission, GARP has again teamed
with Philippe Jorion to produce the fifth edition of the Financial Risk Manager
Handbook.

The Handbook follows GARP's FRM Committee’s published FRM Study
Guide, which sets forth primary topics and subtopics covered in the FRM exam.
The topics are selected by the FRM Committee as being representative of the
theories and concepts utilized by risk management professionals as they address
Current issues.

Over the years the Study Guide has taken on an importance far exceeding its
initial intent of providing guidance for FRM candidates. The Study Guide is now
being used by universities, educators, and executives around the world to develop
graduate-level business and finance courses, as a reference list for purchasing new
readings for personal and professional libraries, as an objective outline to assess
the risk management gualifications of an employee or a job applicant, and as
guidance on the important trends currently affecting the financial risk management
profession.

Given the expanded and dramatically growing recognition of the financial risk
management profession globally, the Handbook has similarly assumed a natural
and advanced role beyond its original purpose. It has now become the primary
reference manual for risk professionals, academicians, and executives around the
world. Professional risk managers must be well versed in a wide variety of risk-
related concepts and theories, and must also keep themselves up-to-date with
a rapidly changing marketplace. The Handbook is designed to allow them to
do just that. It provides a financial risk management practitioner with the latest
thinking and approaches to financial risk-related issues. It also provides coverage
of advanced topics with questions and rutorials to enhance the reader’s learning
experience.

This fifth edition of the Handbook includes revised coverage of the primary
topic areas covered by the FRM examination. Importantly, this edition also in-
cludes the latest lessons from the recent credit crisis, as well as new and more
recent sample FRM questions.

The Handbook continues to keep pace with the dynamic financial risk pro-
fession while simultaneously offering serious risk professionals an excellent and
cost-effective tool to keep abreast of the latest issues affecting the global risk
nanagementt COMmRIUnity.

X
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INTRODUCTION

Devéeloping credibility and global acceptance for.a professional certification

'program _1_5_ a lengthy and comphcated process.-When GARP first admmisteled
it FRM'6; exam in 1997, the concept of a professional risk manager and a global
certification relating to that person’s skill set was more theory than reality. That
has now completely changed, as the nuinber of current FRM holders exceeds
16,000.
The FRM is now the benchmark for a financial risk manager anywhere in the
world. Professional risk managers having earned the FRM credential are globally
recogmzed as having achieved a level of professional competency and a demon-

strated ab;llty to dynamically measure and manage financial risk in a téal- world_

. setting in accordance with global standards.

GARP is "proud to continue t6 make this Handbook available to finanial rlsk
professionals around the world. Philippe Jorion, a preeminent risk manageniént

'profcssnonal has again compiled an exceptional reference book. Supplementcd

by an mteracnve test question CD, this Handbook is a rfequirement for any risk
ﬁrofessxonal s hbrary

Global Association of Risk Profes'siona_ls
February 2009
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isk management siarts with the pricing of assets. The simplest assets to study
Rare regular, fixed-coupon bonds. Because their cash flows are predetermined,
we can translate their stream of cash flows into a present value by discounting
at a fixed interest rate. Thus the valuation of bonds involves understanding com-
pounded interest, discounting, as well as the relationship between present values
and interest rates.

Risk management goes one step further than pricing, however. It examines
potential chdnges in the price of assets as the interest rate changes. In'this chapter;
we assume that there is a single interest rate, or vield, that is used to price the
bond. This will be our fundamental risk factor. This chapter describes the rela-
tionship between bond prices and yields and presents indispensable tools for the
management of fixed-income portfolios.

This chapter starts out coverage of quantitative analysis by discussing bond
fundamentals. Section 1.1 reviews the concepts of discounting, present values, and
future values. Section 1.2 then plunges into the price-yield relationship. It shows
how the Taylor expansion rule can be used to relate movements in bond prices
te those in ylelds. This Taylor expansion rule, however, covers much more than
bonds. It is a building block of risk measurement methods based on local valuation,
as we shall see later. Section 1.3 then presents an economic interpretation of
duration and convexity.

The reader should be forewarried that this chapter, like many others in this
handbook, is rather compact. This chapter provides a quick review of bond fun-
damentals with particular attention to risk measurement applications. By the end
of this chapter, however, the reader should be able to answer advanced FRM
guestions on bond mathematics.

1.1 BISCOUNTING, PRESENT, AND FUTURE VALUE

An investor considers a zero-coupon bond that pays $100 in 10 years. Assume
that the investment is guaranteed by the U.S. governinent, and that there is no
credit risk. So, this is a default-free bond, which is exposed to market risk only.
Because the payment occurs at a future date, the current value of the investment
is surely less than an up-front payment of $100.

To value the payment, we need a discounting factor. This is also the interest
rate, or more simply the yield. Define C, as the cash flow at time ¢ and the

3
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QUANTITATIVE ANALYSIS

discounting factor as y. We define T as the.number of periods until maturity, e.g.,
number of years, also known as tenor. The present value (P V) of the bond can be
computed as
Cr
(b

(1.1)

For instance, a payment of Cr = $100 in 10 years discounted at 6 percent is only
worth $55.84 now. So, all else fixed, the market value of zero-coupon bonds
decreases with longer maturities. Also, keeping. T fixed, the value of the bond
decreases as the yield increases.

Conversely, we can compute the future value (FV) of the bond as

FV=PVx(1+yT (1.2)

For instance, an investment now worth PV = $100 growing at 6 percent will have
a future value of FV = $179.08 in 10 years.

Here, the yield has a useful i interpretation, which is that of an internal rate of
return on the bond, or annual growth rate. It is easier to deal with rates of returns
than with dollar values. Rates of return, when expressed in percentage terms and
on an annual basis, are directly comparable across assets. An annualized yield is
sometimes defined as the effective annual rate (EAR).

o Itis important to note that the interest rate should be stated along with the
method used for compoundmg Annual compounding is' very common. Other
conventions exist, however. For instance, the U.S. Treasury market uses semi-
annual compounding. Define in this case ¥° as the rate based on semiannual
compounding. To maintain comparability, it is expressed in annualized form, i.e.,
after multiplicarion by 2. The number of periods, or semesters, is now 27. The
formula for finding y° is

Cr

= TS 2 3

For instance, a Treasury zero-coupon bond with a maturity of T = 10 years would
have 2T = 20 semiannual compounding periods. Comparing with {1.1), we see

that
(1+y)=1+y27 ~ (1.4)

Continuous compounding is often used when modeling derivatives. It is the
limit of the case where the number of compounding periods per year increases to
infinity. The continuously compounded interest rate y© is derived from

PV=Crxe?T | (1.5)

where el), sometimes noted as exp(-), represents the exponential function.

Note that in all of these Equations (1.1}, (1.3}, and (1.5), the present value
and future cash flows are identical. Because of different compounding periods,
however, the yieids will differ. Hence, the compounding period should altways be
stated.
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Consider a bond that pays $100 in 10 years and has a present value of §55.8395.
This corresponds to an annually compounded rate of 6.00% using PV = Cy/
(149, or {1 4 y) = (Cr/ P V)™

This rate can be transformed into a semiannual compounded rate, using
(145520 = (L+ ), or ¥5/2=(1+ 32 —1, or 5 = ((1+0.06/1/2 1} x
2 = 0.0591 = 5.91%. It can be also transformed into a continuously compounded
rate, using exp(y®) = {1+ ), or y¢ = In({1 + 0.06) = 0.0583 = 5.83%.

Note that as we increase the frequency of the compounding, the resulting
rate decreases. Intuitively, because our money works harder with more trequent
compounding, a lower investment rate will achieve the same payoff at the end.

EXAMPLE 1.1: FRM EXAM 2002—QUESTION 48

An investor buys a Treasury bill maturing in 1 month for $987. On the
maturity date the investor collects $1,000. Calculate effective annual rate
(EAR).

a. 17.0%
b, 15.83%
c 13.0%
d. 11.6%

T

EXAMPLE 1.2: FRM EXAM 2002—CQUESTION 51

Consider a savings account that pays an annual interest rate of 8%. Calculate
the amount of time it would take to double your money. Round to the nearest
year.

a. 7 years
b. 8 years
c. 9 years
d. 10 years

TECRERERRY




8 QUANTITATIVE ANALYSIS

1.2 PRICE-YIELD RELATIONSHIP

1.2.1 Valuation

The fundamental discounting relationship from Equation (1.1} can be extended
to any bond with a fixed cash-flow pattern. We can write the present value of a
bond P as'the discounted value of future cash flows:

TG
{14 y)t

{1.6)

=1

where: C; = the cash flow (coupon or principal) in period ¢
t = the number of periods {e.g., half-years) to each payment
T = the number of periods to final maturity
y = the discounting factor per period {e.g., ¥°/2)

. A typical cash-flow pattern consists of a fixed coupon payment plus the re-
paymerit of the principal, or face value at expiration. Define ¢ as the COUpON rate

- and_F'a§ the face value. We have C, = ¢F prior to expiration, and at expira-
tion, we have Cr = ¢F .+ F. The appendix reviews useful formulas that provide
closed-form sclutions for such bonds.

When the coupon rate ¢ precisely matches the yield -y, using the same com-
pouriding ffequency, the present value of the bond must be equal to the face
value. The bond is said to be a par bond. If the coupon is greater than the yield,
the price must be greater than the face value, which means that this is a pre-
mium bond. Conversely, if the coupon is lower, or even zero for a zero-coupon
bond, the price must be less than the face value, which means that this is a
discount bond.

Equation {1.6) describes the relationship between the yield y and the value of
the bond P, given its cash-flow characteristics. In other words, the value P can
also be written as a nonlinear function of the yield y:

P = f(y) (1.7}

Conversely, we can set P to the current market price of the bond, including
any accrued interest. From this, we can compute the “implied” yield thar will
solve this equation.

Figure 1.1 describes the price-yield function for a 10-year bond with a 6%
annual coupon. In risk management terms, this is also the relationship between
the payoff on the asset and the risk factor. At a yield of 6%, the price s at
pat, P = $100. Higher yields imply lower prices. This is an example of a payoff
function, which links the price to the underlying risk factos.

Over a wide range of yield values, this is a highly nonlinear relationship. For
instance, when the yield is zero, the value of the bond is sitnply the sum of cash
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Bond price 10-year, 6% coupon bond

0 6 10 .20 30 40 50
Yield

HEBURE 1.1 Price-Yield Relationship

flows, or $160 in this case. When the yield tends to very large values, the bond
price tends to zero. For small movements around the initial yield of 6%, however,
the relationship is quasilinear.

There is a particularly simple relationship for consols, or perpetual bonds,
which are bonds making regular coupon payments but with no redemption date.
For a consol, the maturity js infinite and the cash flows are all equal to a fixed
percentage of the face value, C; = C = cF. As a result, the price can he simplified
from Equation {1.6) to -

=2l

1 1 1
_ ol 8
d ‘F[(1+y)+<1+y>2+(1+y)3+ ] F 1.8

as shown in the appendix. In this case, the price is simply proportional to the
inverse of the yield. Higher vields lead to lower bond prices, and vice versa.

Consider a bond that pays $100 in 10 years and a 6% annual coupon. Assume
that the next coupon payment is iri exactly one year. What is the market value if
the.yield is 6%? If it falls to 5%?

The bond cash flows are C; =$6,C; = §6, ..., Cyy = $106. Using Equation
(1.6) and discounting at 6%, this gives the present value of cash flows of $5.66,
$5.34,...,$59.19, for a total of $100.00. The bond is selling at par. This is logical
because the coupon is equal to the yield, which is also annually compounded.
Alternatively, discounting at 5% leads to a price of $107.72.
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1.2.2 Taylor Fxoansion

Let us say that we want to see what happens to the price if the yield changes from
its initial value, called yp, t0 a new value, y; = y, + Ay. Risk management is all
about assessing the effect of changes in risk factors such as yields on asset values.
Are there shortcuts to help us with this?

We could recompute the new value of the bond as Py = f (y1). If the change
is not too large, however, we can apply a very useful shortcut. The nonlincar
relationship can be approximated by a Taylor expansion around its initial value!

_ 1
Pr=To+ [way+ "yl ay)* +--- (1.9)

where f'(-) = %lyi is the first derivative and f7(-) = %2351 is the second derivative of

the function f(} valued at the starting point.2 This expansion can be generalized
to situations where the function depends on two or more variables. For bonds, the
first derivative is related to the duration measure, and the second to convexity.

Equation (1.9) represents an infinite expansion with increasing powers of
Ay. Only the first two terms (linear and quadratic) are ever used by finance
practitioners. They provide a good approximation to changes in prices relative to
other assumptions we have to make about pricing assets. If the increment is very
small, even the quadratic term will be negligible.

Equation (1.9) is fundamental for risk management. It 1s used, sometimes in
different guises, across a variety of financial markets. We will see later that this
Taylor expansion is also used to approximate the movement in the value of 2
derivatives contract, such as an option on a stock. In this case, Equation (1.9) is

AP = f(S)AS + %f“(S)(AS)Z 4 (1.10)

where § is now the price of the underlying asset, such as the stock. Here, the first
derivative f'(S) is called delta, and the second f*(S), gamma.

The Taylor expansion allows easy aggregation across financial instruments.
If we have % units (numbers) of bond 7 and a total of N different bonds in the
portfolio, the portfolio derivatives are given by

N
fo=>"xfy (1.11)
f=1

*This is named after the English machematician Brook Taylor (1685-1731); who published this
result in 1715. The full recogpition of the importance of this result only came in 1755 when Euler
applied it to differential calculus.

2 This first assumes that the function can be written in polynomial form as P(y + Ay) = ag + a) Ay +
ay(AyY + -, with unknown coefficients ag, ay, 45. To solve for the first, we set Ay = 0. This gives
ag = Pu. Next, we take the derivative of both sides and set Ay =0.This gives a3 = {"{3). The next
step gives 2a; = [“{y0). Here, the term “derivatives” takes the usual mathematical interpretation,
and has nothing to do with derivatives products such as options.
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1.3 30ND PRICE DERIVATIVES

For fixed-income instruments, the derivatives are so important that they have been
3 p Y
given a special name.? The negative of the first derivative is the dollar duration

(DD):
dP
fl)=—=-D"x P (1.12]
¥

where D*is called the modified duration. Thus, dollar duration is
DD = D* x Py (1.13)

where the price Py sepresent the market price, including any accrued interest.
Sometimes, risk is measured as the doliar value of a basis point (DVBP),

_ DVBP =DD x Ay = [ x o] x 0.0001 (1.14)

with 0.0001 representing an interest rate change of one basis point {bp) or one
hundredth of a percent, The DVBP, sometimes called the DV01, m=asures can be
easily added up across the portfolio,

The second derivative is the dollar convexity (DC}:

2
{30 ‘;; =C x Py (1.15)
where C is called the convexity.

For fxed-income instruments with known cash flow the sricqisield function
is known, and we can compute analytical first and second derivatives. Consider,
for example, our simple zero-coupon bond in Equation (1.1} where the only
payment is the face vahie, Cr = F."We take the first derivative, which is

e L
dy dy {i1+97 (1+yTH {14+

{1.16)

Coinparing with Equation (1.12), we sec that the modified duration must be given
by D* = T/{1 + y). The conventional measure of duratton is D = T; which does
not include division by {1 + ¥} in the denominator. This is also called Macaulay
duration.. Note rhar duration is expressed in periods, like T. With annual com-
pounding, duration is in years. With semiannual compounding, duration is in
semesters. [t then has to be divided by two for conversion to years. Modified

INaote that this chapter does not present duration in the rraditional rextbook order. In line with
the advanced focus on risk management, we fiest analyze the properties of duration as a sensitivity
measure. This applies to any type of fixed-income instrument. Later, we will iflustrate the vsuzl
definition of duration as a weighted average materity, which applies for fixed-coupon bonds only.
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duration D* is related to Macaulay duration D

D
D= —— _
(1+y} 1.17)

Modified duration is the appropriate measure of interest rate exposure. The
quantity {1 4 y) appears in the denominator because we took the derivative of the
present value term with discrete compounding. If we use continuous compounding,
madified duration is identical to the conventional duration measuee. In pracrice,
the difference between Macaulay and modified duration is usually small.

Let us now go back to Equation (1.16) and considér the second derivative,
which is

2p | F _(T+4yr
& =T -DgT Y2 (T4 9P

. x P 1.18
) (1.18)
Comparing with Equation (1.15), we see that the convexity is C = (T + 1)T/
(1 + y)*. Note that its dimension is expressed in period squared, With semiannual
compounding, cenvexity is measured in semesters squared, It then has to be di-

-vided by 4 for coniversion to years squared.* So, convexity must be positive for

bonds with fixed coupons. = _ -
Putting together all these equations, we get the Taylor expansion for the change
in the price of 2 bond, which is

AP = —[D* x P}(Ay) + -;:[c x PI(AY? +--- (1.19)

Therefore duration measures the ﬁ:st—ordcf {linear} effect of changes in yield and

Mol vaking2BaGtiond-order (quadratic) term,

-

ng at 2 yield of § per-
cenc. The present value is obtained as P = 100/{1 + 6/200)*° = 55.368. As is the
practice in the Treasiry market, yields are semiannually compounded. Thus all
computations should be carried out using semesters, after which final results can
be converted into annual units.

Here, Macaulay duration is exactly 10 years, as D= T for a zero coupon
bond. Tts modified duration is D* = 20/{1 4+ 6/200) = 19,42 semesters, which
is 9.71 years. Its convexity is C=21 x 20/{146/200)2 = 335.89 semesters

4 This is because the conversion to annuai terms is obtained by multiplying the semiannual yield Ay
Ly two. As a result, the duration term must be divided by 2 and the convexity term by 22, or 4, for
coaversion to annual units.

? For such examples in this handbook, please note that intermediate numbers are reported with fewer
significant digits than actually used in the computations. As a result, using rounded off numbers
may give results that differ slighly from the final numbers shown here.
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Bond Fundamentals i

squared, which is 98.97 in years squared. Doliar duration is DD = D* x ' =
9.71 x $55.37 = §$537.55. The DVBP is DVBP = DD x 0.0001 = $0.0538.

We want to approximate the change in the value of the bond if the yield
goes to 7%. Using Equation (1.19), we have AP = —[9.71 x $55.37}{0.01) +
0.5[98.97 x $55.37)(0.01)> = —$5.375 + $0.274 = —$5.101. Using the linear
term only, the new price is $55.368 — $5.375 = $49.992. Using the two terms
in the expansion, the predicted price is slightly higher, at $55.368 — $5.375 +
$0.274 = §50.266. ’

These numbers can be compared with the exact value, which is $50.257. The
linear approximation has a relative pricing error of —0.53%, which is not bad.
Adding a quadratic term reduces this to an-error of 0.02% only, which is very
small, given typical bid-ask spreads.

More generally, Figure 1.2 compares the quality of the Taylor series approx-
imation. We consider a 10-year bond paying a 6 percent coupon semiannually.
Initially, the yield s also at 6 percent and, as a result, the price of the bond is at-
par, at $100. The graph compares three lines representing

1. The actual, exact price ) P= fly+ Ay)
2. The duration estimate P = Py — D*PyAy
3. The duration and convexity estimate P = Py — D*PoAy + (1/2)CPo(Ay)?

The actual price curve shows an increase in the bond price if the yield falls
and, conversely, a depreciation if the yield increases. This effect is captured by the
tangent to the true price curve, which represents the linear approximation based
on duration. For small movements in the'yield, this linear approximation provides
a reasonable fit to the exact price.

Band price  10-year, 6% coupon bond

150 1 Aclual price
] Duration +
convexity
’ estimate
100 T ————————————————
- : \
1 Duration
50 : estimate .~
] i
1] T T T T T F T T T
0 2 6 § 10 12 14

HSYRE 1.2 Price Approximation




12

QUANTITATIVE ANALYSIS

For large movements in price, however, the price-yield function becomes more
curved -and the linear fit déteriorates, Under these conditions, the quadratic ap-
proximation is noticeably better.

We'should also note that the curvature is away from the origin, which explains
the term convexity (as opposed to concavity). Figure 1.3 compares curves with
different values for convexity. This curvature is beneficial since the second-order.
effect 0.5[C x PJ{Ay)? must be positive when' convexity is positive.

As the figure shows, when the yield rises, the price drbps but less than predicted
by the tangent. Conversely, if the yield falls, the price increases faster than along
the tangent. In other words, the quadratic term is always beneficial.

The bond’s modified duration and convexity can also be computed directly
from numerical derivatives. Duration and convexity cannot be computed directly
for some bonds, such as mortgage-backed securities, because their cash flows are
uncertain. Instead, the portfolio manager has access to pricing models that can be
used to reprice the securities under various yield environments.

Bond price

Value Lower convexity
increases /

more than Higher convexity
duration model

Value dropskss

! than duratior. model

Yield

FIGURE 1.3 Tifect of Convexity
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Price 30-year, zeso-coupon bond

P,

Yo~ly Yo Yo~ Ay

FIGURE 1.4  Effective Duration and Convexity

As shown in Figure 1.4, we choose a change in the yield, Ay, and reprice
the bond under an upmove scenario, Py = Py + Ay), and downmove scenario,
P_ = P(y, — Ay). Effective duration is measured by. the numerical derivative.
Using D' = —(1/P)dP/dy, it is estimated as

_ PR Plo— Ayl = Ply+ &)
(1By9) Canky

Dk (1.20)

Using C = {1/P)d>P /dy?, effective convexity is estimated as’

P(yo— Byl —Po  Po—Plyo+ Ay)
(PoAy) (Podry)

CE = [D_ - Dy)/Ay = { }/Ay (1.21)

To illustrate, consider a 30-year zero-coupon bond with a yield of 6%, semi-
annually compounded. The initial price is $16.9733. We revalue the bond at 5%
and 7%, with prices shown in the table. The effective duration in Equation (1.20}
uses the two extreme points. The effective convexity in Equation (1.21) uses the
difference between the dollar durations for the upmove and downmove. Note that
convexity is positive if duration increases as yields fall, or if D_ > Dy,

The computations are detailed in Table 1.1, which shows an effective duration
of 29.56. This is very close to the true value of 29.13, and would be even closer
if the step Ay was smaller. Similarly, the effective convexity is 869.11, which is
close to the true value of 862.48.

Finally, this numerical approach can be applicd to get an estimate of the
duration of a bond by considering bonds with the same matarity but different
coupons. If interest rates decrease by 1%, the market price of a 6% bond should
g0 up to a value close to that of a 7% bond. Thus we replace a drop in yield of
Ay with an increase in coupon Ac and use the effective duration method to find
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TABLE t.1  Effective Durarion and Convexity

Yield Bond Duration Convexity
State {%) Value Computation 7 Computation
nitial yo 600 16.9733
Up yo + Ay 7.00 126534 Duration up: 25.22
Dewn y — Ay 5.00  22.7284 Duration down: 33.91
Difference in'valucs —-10.0349 8.69
Difference in yields 0.02 0.01
Effective measure 29.56 869.11

Exact measure 2913 B62.48

the coupon curve duration®

cc__ [P+ =P ]  Plw;c+ Ac)~ Plyg;c — Ac)
T (2RAg (2A¢) P,

{1.22)

This approach is useful for securities which are difficult to price under various yield
scenarios. It only requires the market prices of securities with different coupons.

Consider a 10-year bond that pays a 7% coupon semiannually. In a 7% yield
environment, the bond is selling at par and has modified duration of 7.11 years.
The prices of 6% and 8% coupon bonds are $92.89 and $107.11, respectively.

This gives a coupon curve duration of (107.11 - 92.89)/(0.02 x 100) = 7.11,
which in this case is the same as modified duration.

EXAMPLE 1.3: FRM EXAM 2006—QUESTION 75

A zero-coupon bond with a maturity of 10 years has an annual effective yield
of 10%. What is the closest value for its modified duration?

a. 9

b. 10
c. 99
d. 100

BRI s ek

#For a more formal proof, we could rake the pricing fermula for a consol at par and compute the
derivatives with respect to y and ¢. Apart from the sign, these derivatives are tdentical when y = ¢.
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EXAMPLE 1.4: FRM EXAM 2007 —QUESTION 115

A portfolio manager has a bond position worth USD 100 million. The po-
sition has a modified duration of eight years and a convexity of 150 years.
Assume that the term structure is flat. By how much does the value of the
position change if interest rates increase by 25 basis points?

a. USD —2,046,875
b. USD —2,187,500
c. USD —1,953,125
d. USD —1,906,250

EXAMPLE 1.5: FRM EXAM 2087—QUESTION 55

Consider the following three methods of estimating the profit and loss (P&L)
of a bullet bond: full repricing, duration (PV01), and duration plus convexity.
Rank the methods to estimate the P&L impact of a large negative yield shock
from the lowest to the highest.

a. Duration, duration plus convexity, full repricing
b. Duration, full repricing, duration plus convexity
¢. Duration plus convexity, duration, full repricing
d. Full repricing, duration plus convexity, duration

T e L S R M RN SCRT S S R

1.3.1 Interpreting Duration and Gonvexity

The preceding section has shown how to compute analytical formulas for duration
and convexity in the case of a simple zero-coupon bond. We can use the same
approach for coupon-paying bonds. Going back to Equation {1.6), we have

dP LT LIRS P D
_— —_— [— P )
Zﬂ“’ o (;: TR N e A P 123

which defines duration as

.
D:Z(me (1.24)
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FIBURE 1.5 Duraiion as the Maturiy of 2 Zero-Coupon Bond

QUANTITATIVE ANALYS!S

The economic interpretation of duration is thar it represents the average time
to wart for cach payment, weighted by the present value of the associated cash
flow. Indeed, replacing P, we can'write

T

G/
D:E:ngmm (1.25)

where the weights wy, represent the ratio of the present value of cach cash flow
G relative to the total, and sum to unity. This explains why the duration of 2

zero-coupon bond is equal to the maturity. There is only one cash flow and its
weight is one.

Figure 1.5 lays out the present value of the cash flows of a 6% coupon, 10-year
bond. Given a duration of 7.80 years, this coupon-paying bond s equivalent to a
zero-coupen bond maturing in exactly 7.80 years.

For bonds with fixed coupons, duration is less than maturity. For instance,
Figure 1.6 shows how the duration of a 10-year bond varies with its coupon.
With a zero coupon, Macsulay duration is equal to marurity. Higher coupons
place more weight on prior payments and therefore reduce duration.

0 Present value of payrments
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FIGURE 1.8 Duration and Coupon

Duration can be expressed in a simple form for consals. From Equation {1.8),
we have P = {¢/y)F. Taking the derivative, we find

dP -1 1 '
= C.F(—-Z—) (D [EF = (1) 2P = p (1.26)
dy Y Yy y {149}
Hence the Macaulay duration for the consol Dy is
1
Dc = (_.J;_J’_} (1.27)

This shows that the duration of a consol is finite even if its maturity is infinite.
Also, this duration does not depend on the coupon.

This formula provides a useful rule of thumb. For a leng-term coupon-paying
bond, duration should be lower than {1 + y)/y. For instance, when y = 6%, the
upper limit on duration is D¢ = 1.06/0.06, or 17.7 years. In this environment, the
duration of a par 30-year bond is 14.25, which is indeed lower than 17.7 years.

Figure 1.7 describes the relationship between duration, maturity, and coupon
for regular bonds in 2 €% yvield environment. For the zero-coupon bond, DD = T,
which is a straight line going through the origin. For the par 6% bond, duration
increases monotonically with maturity untl it reaches the asymptote of Dg. The
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FIGURE 1.7 Duration and Maturity ]

8% bond has lower duration than the 6% bond for fixed T. Greater coupons, for
a fixed maturity, decrease duration, as more of the payments come early. ;
Finally, the 2% bond displays a pattern intermediate between the zero-coupon '
and 6% bonds. It initially behaves like the zero, exceeding Dg initially then falling
back to the asymptote, which is the same for all coupon-paying bonds.
Taking now the second derivative in Equation {1.23), we have

#P tt+1)G [t +1)C
i ;:(Hy)m = L;(—l +y)‘+2/P x P (1.28)
which defines convexity as
Lt +1)C, - -
S e ) 1.
©= Lt (1.29)

Convexity can also be written as

T

e HtH 1) G/ e+
C= Ly X Taaa Ty~ LT e <

=1

(1.30)

t=1

Becaitse the squared ¢ term dominates in the fraction, this basically involves a
weighted average of the square of time. Therefore, convexity is much greater
for long-maturity bonds because they have payoffs associated with large values
of t. The formula also shows that convexity. is always positive for such bonds,
implying that the curvature effect is beneficial: As we will see later, convexity can
be negative for bonds that have uncertain cash flows, such as mortgage-backed
securities (MBSs) or callable bonds.
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FIGURE 1.8 Convexity and Maturity

Figure 1.8 displays the behavior of convexity, comparing a zero-coupon bond-
with a 6% coupon bond with identical maturities. The zero-coupon bond always
has greater convexity, because there is only one cash flow at maturity. Its convexity
is roughly the square of maturity, for example about 900 for the 30-year zero. In
contrast, the 30-year coupon bond has a convexity of about 300 only..

As an illustration, Table 1.2 details the steps of the computation of duraticn
and convexity for a two-year, 6% semiannual coupon-paying. bond. We first
convert the annual coupon and yicld into semianimal equivalent, $3 and 3%
each. The PV column then reports the present value of each cash flow. We verify
that these add up to $100, since the bond must be selling at par.

Next, the duration term column multiplies each PV term by time, or more
precisely the number of half years unti] payment. This adds up to §382.86, which
divided by the price gives D = 3.83. This number is measured in half years, and
we need to divide by two to convert to years. Macaulay duration is 1.91 years,
and modified duration D* = 1.91/1.03 = 1.86 vears. Note that, to be consistent,
the adjustment in the denominator involves the semiannual yield of 3%.

Finally, the right-most column shows how to compute the bond’s convexity.
Each term involves PV, times #{t + 1}/{1 + 3)*. These terms sum to 1,777.755,
or divided by the price, 17.78. This number is expressed in units of time squared
and must be divided by 4 to be converted in annual terms. We find a convexity of
C = 4.44, in year-squared.
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TAELE 1.2 Computing Dueration and Convexity
Convexity
Period Yicld PV of Duration Term
{half-year) Payment (%) Payment Term Ht+1)PV,
¢ G (6mo} C/{1+3)f tPV, x(1/(1+3)?)
1 3 3.00 2913 2.913 5.491
2 3 3.00 2.828 5.656 15.993
3 3 3.00 2.745 8.236 31.054
4 103 3.00 91.514 366.057 1725.218
Sum: 100.00 382.861 1777.755
{half-years) 3.83 17.78
(years) 1.91
Modified duration 1.86
Convexity 4.44

E)[AMP_!.E 1.6: FRM EXAM 2003—QUESTION 13

Suppnse the face value of a three-year option-free bond is USD 1,000 and
the annual coupon is 10%. The current vield to maturity is 5%. What is the
modified duration of this bond?

a. 2.62 _ ! ;
b. 2.85 '
c. 3.00
d. 2.75

EXAMPLE 1.7: FRM EXAM 2002—QUESTION 118

A Treasury bond has a coupon rate of €% per annum (the coupons are paid
semtanually} and a semiannually compounded yield of 4% per annum. The
bond matures in 18 months and the néxt coupon will be paid 6 months from
now. Which number below is closest to the bond’s Macaulay duration?

a. 1.023 years
b. 1.457 years
c. 1.500 yezljrs '
d. 2.915 years

T
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EXAMPLE 1.8:-DURATION AND COUPON

A and B are two perpetual bonds, that is, their maturities are infinite. A has
a coupon of 4% and B has a coupon of 8%. Assuming that both are trading
at the same yield, what can be said about the duration of these bonds?

a. The duration of A is greater than the duration of B.
b. The duration of A is less than the duration of B.

¢. A and B both have the same duration.

d. Nouae of the above.

EXAMPLE 1.9: FRM EXAM 2004—QUESTION 18
A manager wants to swap a bond for a bond with the same price but higher
duration. Which of the following bond characteristics wonld be associated

with a higher duration?

L. A higher coupon rate

| IL More frequent coupon payments
1 II. A longer terin to maturity
{IV. A lower yield

a_ [, 11, and [
b, If and IV
¢. Ill and IV
d.Tand I

I

ENAMPLE 1.10: FRM EXAM 2001—QUESTION 1 04

When the maturity of a plain coupon bond increases, its duration increases

a. Indefinitely and regularly

b. Up to a certain level

c. Indefinitely and progressively

d. In a way dependent on the bond being priced abave or below par

T 3 TR
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ENAWPLE 1.11: FRM EXAM 2000-—QUESTION 106,

Consider the following bonds:
Bond Number Maturity (yrs) Coupon Rate  Frequency  Yield (Annual)

1 10 6% 1 6%
2 10 6% 2 6%
3 10 0% 1 6% g
4 10 6% 1 5%
5 1 6%

9 6%

How would you rank the bends from the shortest to longest duration?

a. 5-2-1-4-3
b. 1:2-3-4-5
c 5—4—3-142

d 24513

5 - N -

EXAMPLE 1.12: FRM EXAM 2000—QUESTION 110

Which of the following statements are true?

1. The convexity of a 10-year zero-conpon bond is higher than the convexity
of a 10-year, 6% bond,
IL. The convexity of a 10-year zero-coupon bond is higher than the convexity
of 2 6% bond-with a duration of 10 years.
HI. Convexity grows proportionately with the maturity of che bond.
IV. Convexity is always positive for all types of bonds.
V. Convexity is always positive for “straight” bonds.
a:. I only
b. I'and I only
c. Tand Vonly -
d. 11, 11T, and V only
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1.3.2 Portistio Bupation and Convexity

Fixed-income portfolios often involve very large numbers of securities. It would
be impractical to consider the movements of each security individually. Instead,
portfolio managers aggregate the duration and convexity across the portfolio.
A manager who believes that rates will increase should shorten the portfolio
duration relative to that of the benchmark. Say for instance that the benchmark
has a duration of § y¢ars. The manager shortens the portfolio duration to 1 year
only. If rates increase by 2%, the benchmark will lose approximately Sy x 2% =
10%. The portfolio, however, will only lose 1y x 2% = 2%, hence “beating” the
benchmark by 8%. .

Because the Taylor expansion involves a summation, the portfolio duration
is easily obtained from the individual components. Say we have N components
indexed by i. Defining D}, and P, as the portfolio modified duration and value,
the portfolio dollar duration (DD} is

N
DiP,=) DixP, (1.31)

=1

where x; is the number of units of bond i in tke portfolio. A similar relation-
ship holds for the portfolio dollar. convexity (DC). If yields are the same for all
components, this equation also holds for the Macaulay duration.

Because the portfolio’s total market value is simply the summation of the
component market values,

N
Pp=Y %P (1.32)
=1

we can define the portfolio weight w; as w; = x; P;/ Py, provided that the portfolio
market value is nonzero. We can then. write the portfolio duration as a weighted
average of individual durations

D= Dhw (1.33)
Similarly, the portfolio convexity is a weighted average of convexity numbers
N
Cp =) Ciw; (1.34)
—

As an example, consider a portfolio invested in three bonds, described in Table
1.3. The porifolio is long.a 10-year and 1-year bond, and short 2 30-year zero-
coupon bond. Its market value is $1,301,600. Summing the duratton for each
component, the portfolio dollar duration s $2,953.800, which translates into a
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TABLE 1.3 Porcfolio Dollar Duration and Convexity.
Bond 1 Bond 2 Bond 3 Potfolio

Maturity {years) 10 1 30

Coupon 6% 0% 0%

Yield 6% 6% 6%

Price F; $100.00 $94.26 $16.97

Modified duration Dt 7.44 0.97 2313

Convexity G 68.78 1.41 862.48

Number of bonds x 10,000 5,000 —10,000

Dollac amounts x P, $1,000,000 $471,300  -$169,700  $1,301,600
Weight 1w, 76.83% 36.21% -13.04% 100.00%
Dollar duration D! F; $744.00° $91.43 $494.34

PortfolioDD: % D P, $7,440,000 $457,161  —$4,943 361  $2,953,800
Portfolio DC: x.G;P; 68,780,000 664,533 146,362,856 ~76,918.323

duration of 2.27 years. The portfolio convexity is —76,918,323/1, 301, 600 =
—59.10, which is negative duc to the short position in the 30-year zero, which has
very-high convexity.

Alternatively, assume the portfolio manager is given a benchmark which is
the first bond. He or she wants to invest in bonds 2 and 3, keeping the portfolio
duration equal to that of the target, or 7.44 years. To achieve the target value
and dollar duration, the manager needs to solve a system of two equations in the
numbers x; and x:

Value: $100 = x1$94.26 + x$16.97
Dol.Duration: 7.44 x $100'= 0.97 x %,$94.26 + 29.13 x %,$16.97

The solution is x; = 0.817 and x; = 1.354, which gives a portfolio value of
$100 and modified duration of 7.44 years.” The portfolio convexity is 199.25,
higher than the index. Such a portfolio consisting: of very short and very long
maturities is called a barbell portfolio. In contrast, a portfolio with maturities in
the same range is called a bullet portfolio. Note that the barbell portfolio has a
much greater convexity than the hullet bond because of the payment in 30 years.
Such a portfolio would be expected to outperform the bullet portfolio if yields
moved by a large amount.

In sum, duration and convexity are key measures of fixed-income portfolios.
They summarize the lincar and quadratic exposure to movements in yields. This
explains why they are essential tools for fixed-income portfolio managers.

?This can be obtained by first expressing x, in the first equation as a funcrion of x; and then subsri-
tuting back into the second equation. This gives x; = (100 — 24.26x)/16.97, and 744 = 91.43x, +
494342 = 91.43a; + 494.34{100 - 94.26x)/16.97 = 91.43x; + 2512.00 — 2745.79x;. Solving,
we find x = (-2169.00)/(-2654.36} = 0.817 and x; = (100 = 94 26 x 0.817)/16.97 = 1.334.
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EXAMPLE 1.13: FRM EXAM 2002—QUESTION 57

A bond portfolio has the following composition:
1. Portfolio A: price $90,000, modified duration 2.5, long position in
8 bonds
2. Portfolio B: price $110,000, modified duration 3, short position in
6 bonds
3. Portfolio C: price $120,000, modified duration 3.3, long position in §
12 bonds

All interest rates are 10%. If the rates rise by 25 basis points, then the bond
portfolio value will

. Decrease by $11,430
b. Decrease by $21,330
c. Decrease by $12,573
d. Decrease by $23,463

<]

L L o

EXAMPLE 1.14: FRM EXAM 2006—QUESTION 61

Consider the following portfolio of bonds (par amounts are in millions of

UsSD).
Bond Price Par amount held Modified Ducation
A 101.43 3 2.36
B 84.89 5 4.13
C [ 121.87 8 627

What is the value of the portfolio’s DV01 (dollar value of 1 basis point)?

a. 8,019
b. 8,294
c. 8,584
d. 8,813

1.4 IMPORTANT FORMULAS

Compounding: {1+ )7 = (1 + y5/2)2T = T
Fixed-coupon bond valuation: P = ZLI{T%F

Taylor expansion: Py = Py + f'{30)Ay+ %]”’(yg)(A'y}2 + -
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Duration as exposure: i—f =-D'x P.DD=D*x P,DVBP = DD x 0.00C]

. . e _ D T G
Conventional duration: D* = 2, D= ¥oi g/ P

oo dP T G ;7
Convexity: 23 = Cx P, C=37, %/P
Price change: AP = —[D" x P](Ay) + 0.5[C x P](A.'-V)z +...
Consol: P = £F, D= “_;J’_’

Portfolio duration and convexity: D} = 2,111 Drw;, Cp= Z,Iil Ciw;

1.5 ANSWERS T0 CHAPTER EXAMPLES

Example 1.1: FRM Exam 20062—Question 48

a. The EAR is defined by FV/PV = (1+EAR)T. So EAR = (FV/PV)UT — 1,
Here, T = 1/12. So, EAR = (1,000/987)2 — 1 = 17.0%.

Example 1.2: FRM Exam 2002—Questien 31

c. The time ‘T relates the current and future values such-that FV/PV =2 =
(1 + 8%)T. Taking logs of bath sides, this gives T = In(2)/In(1.08) = 9.006.

Example 1.3: FR Exam 2006—Question 75

a. Without doing any computation, the Macaulay duration must be 10 years
because this is a zero-coupon bond. With annual compounding, modified duration
is D* = 10/(1 + 10%), or close to 9 years.

Example 1.4: FRM Exam 2007—Questign 115

c. The change in price is given by AP =-—[D* x P](A;v)-i—%[Cx Pj(ay)?
= —[8x 100](0.0025) + 0.5[150 x 100)(0.0025)* =-—2.000000 + 0.046875 =
—1.953125.

Example 1.5: FRI Exam Z007—0uestion 55

a. When yields drop, the duration approximation gives the smallest price increase,
so the answer must be either a. or b. Figure 1.2 shows that the full repricing curve
for decreases in yvields is slightly higher than the duration and convexity approx-
imation. Alternatively, differentiating Equation 1.18 once more give a negative
term for the third-order derivative. Combined with §y°, which is negative, the
third-order term must be positive.

Fxample 1.6: FRM Exam 2003—Questicn 18
d. As in Table 1.2, we lay out the cash flows and find,
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Period | Payment Yield PV, =
t Ce. y | G/l +y) tPV,
1 100 5.00 9524 9524
2 100 5.00 90.71 181.41
3] 1100 5.00 §50.22 2850.66
Sum: 1136.16 3127.31

Duration is then 2.75, and modified duration 2.62.

Example 1.7: FBM Exam 2002—(Question 118

b. For coupon-paying bonds, Macaulay duration is slightly less than the maturity,
which is 1.5 year here. So, b. would be a good guess. Otherwise, we can compute
duration exactly.

Example 1.8: Duration and Coupon

¢. Going back to the duration equation for the consol, Equation {1.27), we see
that it does not depend on the coupon but only on the yield. Hence, the durations
must be the same. The price of bond A, however, must_be half that of bond B.

Example 1.9: FRM Exam 2004—Question 16

c. Higher duration is associated with physical characteristics that push payments
into the future, i.e., longer term; lower coupons, and less frequent coupon pay-
ments, as well as lower yields, which increase the relative weight of payments in
the future.

Example 1.10: FRM Exam 2001-—08uestion 104

b. With a fixed coupon, the duration goes up to the level of a consol with the same
coupon. See Figure 1.7.

Example 1.11: FRM Exam 2000—gQuestion 106

a. The nine-year bond {number 5} has shorter duration because the maturity is
shortest, at nine years, among comparable bonds. Next, we have to decide berween
bonds 1 and 2, which only differ in the payment frequency. The semiannual bond
{(number 2) has a first payment in six months and has shorter duration than the
annual bond. Next, we have to decide between bonds 1 and 4, which only differ
in the yield. With lower yield, the cash flows further in the future have a higher
weight, so that bond 4 has greater duration, Finally, the zero-coupon bond has
the longest duration. So, the order is 5-2-1-4-3,
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Example 1.12: FBM Exam 2880—0Guastion 119

c. Because convexity is proportional to the square of time 1o payment, the con-
vexity of a bond is mainly driven by the cash flows far into the future. Answer 1.
is correct because the 10-year zero has only one cash flow, whereas the coupon
bond has several others that reduce convexity. Answer 1. is false because the 6%
bond with 10-year duration must have cash flows much further into the future,
say in 30 years, which will create greater convexity.. Answer IIL is false because
convexity grows with the square of time. Answer IV. is false because some bonds,
for example MBSs or callable bonds, can have negative convexity. Answer V. is
correct because convexity must be positive for coupon-paying bonds.

Example 1.13: FRM Exam 2002—Question 57

a. The portfolio dollar durationis D*P =} x; D! P; = +8 x 2.5 x $90,000 — 6 x
3.0 x $110,000 4 12 x 3.3 x $120,000 = $4,572,000. The change in portfolio
value is then —(D % P){Ay) = —$4,572,000 x 0.0025 = —$11,430.

Example 1.14: FRM Exam 2006—Question 61

c. First, the market value of each bond is obtained by multiplying the par amount
by the ratio of the market price divided by 100. Next, this is multiplied by D*
to get the dollar duration DD. Summing, this gives $85.841 million. We multiply
by 1,000,000 to get dollar amounts and by 0.0001 to get the DVO1, which gives
$8,584.

Bond { Price Par Mkt value D* DD |
A 110143 3 3.043 236 7.181
B 8489 5 4.245 4.13 15.530
C 121.87 8. 9.750 6.27 61.130
Sum 8 85.841

RPPENDIX: APPLICATIONS GF INFINITE SERIES

When bonds have fixed coupons, the bond valuation problem often can be in-
terpreted in terms of combinations of infinite series. The most important infinite
series result is for a sum of terms that increase at a geometric rate:

1
1—a

1+ta+a’+d*+ - = (1.35)

This can be proved, for instance, by multiplying both sides by (1 ~ a) and canceling
out terms.
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Equally impostant, consider a geometric serics with a finite number of terms,
say N. We can write this as the difference between two infinite series:

T+ata+a+---+a™!
=(l4+a+a+a+- ) =aN1+a+a*+a° +-.) {1.36)

such that all terms with order N or higher will cancel each other,
We can then write

l4a+a*+a>+-- ta¥' = —a

.37
l—-=a 1—a (1.37)

These formulas are essential to value bonds. Consider first a consol with an
infinite number of coupon payments with a fixed coupon rate ¢, If the yield is y
and the face value F, the value of the bond.is

_ 1, 1 1 .
P=cF [(1.+y1 e tanr o ]

=cFpli+a+ad+--]

- 1 1

=cF i |1
(L+y} | (11704

Similarly, we can value a bond with a firite number of coupons over T peri-
ods at which time the principal is repaid. This is really a portfolio with three parts:

1. A long position in a consol with coupon rate ¢
2. A shojt position in a consol with coupon rate c that starts in T periods
3. A long position in a zero-coupon bond that pays F in T periods.

Note that the combination of (1) and (2) enisures that we have a finite mumber
of coupons. Hence, the bond price should be:

c 1 ¢ 1 c 1 ‘ 1
p=_p__._.~_.-ﬁ+——_1==—'1«‘[1_, }4—- __.F
y o (14+9Ty {1407y (1+ )7 (kuw)
o

where again the formula can be adjusted for different compounding methods.

This is useful for a number of purposes. For instance, when ¢ = y, it is imme-
diately obvious that the price must be at par, P = F. This formula also can be
used to find closed-form solutions for duration and coavexity.
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he preceding chapter has laid out the foundations for understanding how bond

prices move in reiation to yields. More generally, the instrument can be de-
scribed by a payoff function, which links the price to the underlying risk factor.
Next, we have to characterize movements in bond yields, or more generally, any
relevant risk factor in financial markets.

This is done with the tools of probability, a mathematical abstraction that
describes the distribution of risk factors. Each risk factor is viewed as a random
variable whose properties are described by a probability distribution function.
These distributions can be processed with the payoff function to create a distribu-
tion of the profit and loss profile for the trading portfolio.

This chapter reviews the fundamental tools of probability theory for risk
managers. Section 2.1 lays out the foundations, characterizing random variables
by their probability density and distribution functions. These functions can be
described by their principal moments, mean, variance, skewness, and kurtosis.
Distributions with muitiple variables are described in Section 2.2. Section 2.3
then turns to functions of random variables. Section 2.4 presents some examples
of important distribution functions for risk management, including the uniform,
normal, lognormal, Student’s, binomial, and Poisson. Finally, Section 2.5 discusses
limit distributions, which can be used to characterize the average and tails of
independent random variables.

2.1 CHARAGTERIZING RANDOM VARIABLES

The classical approach to probability is based on the concept of the random vari-
able (rv). This can be viewed as the outcome from throwing a die, for example.
Each realization is generated from a fixed process. If the die is perfectly symmetri-
cal, with six faces, we could say that the probability of observing a face with a six
in one throw is p = 1/6. Although the event itself is random, we can still make a
number of useful statements from a fixed data-generating process.

The same approach can be taken to financial markets, where stock pnces,
exchange rates, yields, and commodity prices can be viewed as random variables.
The assumption of a fixed data-generating process for these variables, however, is
more tenuous than for the preceding experiment.

31
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2.1.1 Univariate Distrivution Functions
A random variable X is characterized by a distribution function,
Fix)=P(X<x) (2.1}

which is the probability that the realization of the random variable X ends up less
than or equal to the given number x. This is also called a cumulative distribution
function,

When the variable X takes discrete values, this distribution is obtained by
summing the step values less than or equal to x. That is,

Elx)= 3" f(x;) (2.2)

XX

where the function f(x) is called the frequency function or the probability density
fuaction (p.d.f). Here, f(x) is the probability of observing x. This function is
characterized by its shape as well as fixed parameters, 6.

When the variable is continuous, the distribution is given by

Flx) = ) f()du (2.3)

-~

The density can be obtained from the distribution us'ing

_ dF(x)
flx) = Ix (2.4)

Often, the random variable wil] be described interchangeably by its distribution
or its density.

These functions have notable properties. The density f(u) must be positive for
all u. As x tends to infinity, the distribution tends to unity as it represents the total
probability of any draw for x:

f ) fluydu =1 (2.5)

Figure 2.1 gives an example of a density function f(x), on the top panel, and
of a cumulative distribution function F (x) on the bottom panel. F(x) measures the
area under the f(x) curve to the left of x, which is represented by the shaded area,
Here, this area is 0.24. For small values of x, F{x} is close to zero. Conversely, for
large values of x, F(x) is close to unity,

TN

A gambler wants to characterize the probability density function of the outcomes
from a pair of dice. Because each has six faces, there are 6% = 36 possible throw
combinations. Out of these, there is one occurrence of an outcome of two (cach

die showing one): So, the frequency of an outcome of two 15 one. We can have
two occurrences of a thice (a one and a two and vice versa), and so on.
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The gambler compiles the frequency of each value, from 2 to 12, as shown
in Table 2.1. From this, he or she can compute the probability of each outcome.
For instance, the probability of observing three is equal to 2, the frequency #(x),
divided by the total number of outcomes, of 36, which gives 0.0556. We can
verify that all the probabilities indeed add up to one, since all occurrences must
be accounted for. From the table, we see that the probability of an outcome of 3
or less is 8.33%.

TABLE 2.1  Probability Density Function

Cumulative
Qutcome Frequency Probability Probability
X nfx) fixj F(x)
2 1 1136 0.0278 0.0278
3 2 236 0.0556 0.0833
4 3 3136 0.0833 0.1667
5 4 4/36. 0.1111 0.2778
[ 5 5136 0.1385 0.4167
7 6 6136 0.1667 0.5833
8. 5 536 0.138%9 0.7222
9 4 4136 Q.1111 0.8333
10 3 336 0.0833 0.9167
11 2 2436 0.0556 0.9722
12 i 1136 0.0278 1.0000
Sum 36 1 1.0000
Protability density function
ix}
; Cumulative disiricution function
Fix)
0

X

FIGURE 2.1 Density and Distribution Functions

2.1.2 Moments

A random variable is characterized by its distribution function. Instead of having
to report the whole function, it is convenient to summarize it by a few parameters,
Or moments.
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For instance, the expected value for x, or mean, is given by the integral

1= EX) = /+°° xf{x)dx {(2.6)

which measures the central tendency, or center of gravity of the population.

The distribution can also be described by its quantile, which is the cutoff point
x with an associated probability c:

Flx) = f ) fluydu = ¢ (2.7)

So, there is a probability of ¢ thar the random variable will fall below x. Because
the- total probability adds up to one, there is a probability of p=1 - ¢ that
the random variable will fall above x. Define this quantile as Q(X, ¢). The 50%
quantile is known as the median.

In fact, value at risk (VAR) can be interpreted as the cutoff point such that
a loss will not happen with probability greater than b =95%, say. If f{u}is the
distribution of profit and losses on the portfolio, VAR is defined from

Flx)= f " flddu=(1 - p) (2.8)

where p is the right-tail probability, and ¢ the usual left-tail probability. VAR can
be defined as minus the quantile itself, or alternatively, the deviation berween the
expected valuc and the quantile,

VAR(c) = E(X) - Q(X, ¢) (2.9)

Norte that VAR is typically reported as a loss, i.e., a positive number, which
explains the negative sign. Figure 2.2 shows an example with ¢ = 5%.

Probability density function

#(x)

VAR

5% |7

Cumulative distribution function

Fx)

5% e
FIGUAE 2.2 VAR as a Quantile




undzmentals of Probabifity L ) 35

Probability density function

Zero
skewness

Positive
skewness

Negative
skéviess

FIGUAE 2.8 Fffect of Skewness

Another useful rigment is the squared dispersion ardiind the fiéan, of variance
ot= VX = [ [x— E()) f(x)dx (2.10)
=0 '

The standard deviation is more convenient to use as it has the same units as the
original variable X

D) = 6 =+/V(X) (2.11)

Next, the scaled third moment is the skewness, which describes deparfures
from symmetry. It is defined as

y = ( f :[;— E(X)]if(’x)&x)._ / e P % v

‘Negative skewness indicates that the distribution has a long left tail, which indi-
zates a high probability of observing large negative values: 1t this represents the.
distribution of profits and losses for a poitfolio, this is a dangerous situation.
Figure 2.3 displays distributions with various signs for fhe skewness.

The scaled fourth moment is the kurtosis, which describes the degree of “flat-
ness” of a distribution, or width of its tails. Tt fs defined as

o ([Cmmrn) 4 o

Because of the fourth power, large observations in the tail will have a large
weight and hence create large kurtosis. Such a distribution is called leptokurtic,
or fat-tailed. This parameter is very important for risk measurement. A kurtosis
of 3 s considered average. High kurtosis indicates a higher probability of ex-
treme movements. A distribution with kuctosis lower than 3 is called platykustic,
Figuré 2.4 displays distribittions with various valués for the kurtosis.
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Probabillty density funciion

Fat tails
(kuﬂ05|s>3) )

! Y
"/ Thintails_*
! (kui‘losls<3)\:'t.‘

FIGURE 2.4  Effect of Kurtosis

cumputmu “Moments

Our gambler wants to know the expécted value of the outcome of throwmg two
dice. He comiputes the prodiict of each outcome and associated probability, as
shown in Table 2.2. For instance, the first entry is xf(x) = 2 x 0.0278 = 0.0556,
and so on. Summing across all events, the mean is p = 7.000. This is also the
median, since the distribution is perfectly symmetrical.,

Next, we can use Equation (2.10) to compute the variance, The first term
s (x—u)? flx)={2~7)%0.0278 = = 0.6944. These terms add up to 5.8333, o,
takirg the square root, o = 2.4153. The skewness terms sum to zéro, because
for each entry with a positive deviation (x — u)?, there is an identical one with
a negatwe sign and with the same probab;hty Finally, the kurtosis_ terms {x =

1) f(x) sum to 80.5. Dividing by ¢* = 34.0278, this gives a kurtesis of & =
2 3657. '

TABLE 2.2 Computing Moments of a Distribution

Outcome - Prob. Mean Variance Skewhness Kurtesis
% flx)  xflx) . Ax~pPflx) (x -aPflx) (- pl flx)
2 00278 00556 - 0.6944 = —347227° 173611
3 0.0556  0.1667- 0.8889 - —3.5556 142222
4 0.0833 . 0.3333 0.7500 ~2.2500 6.7500
5 0.1111  0.5556. . 0.4444 ~0.8889 1.7778
6 0.1389  0.8333 . - 01389 ~0.1389 0.1389
7 0.1667  1.1667 . ° -0.0000 0.0000 0.0000
8 01389 - 11i11 - 01389 01389 - '0.1389
9 0011t 10000 0.4444 0.9889 - 1.7778
10 0.0833  0.8333 - 0.7500 2.2500 6.7500
1 0.0556  0.6111 0.8889 3.5556 14.2222
12 T 00278 0 03333 0.6944 3.4722 17.3611
Sum 100000 7.0000 &= 5.8333 0.0000 $0.5000
Denominatot o3 =14.0888 o' =34.0278
Mean StdDev Skewness “Kurtosis.

w=7.00" o =24152 y-= 0.0000 5 = 23657
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2.2 MULTIVARIATE BISTRIBUTIGN FUNGTIONS

In practice, portfolio payoffs depend on numerous random variables. To simplify,
start with two random variables. This could represent two currencies, or two
interest rate factors, or default and credit exposure, to give just a few examples.

2.2.1 Joint Distpihutions

We can extend Equation (2.1} to

Fia(x1, x3) = P(X; < x, X2 < 1) {2.14)

which defines a joint bivariate distribution function. In the continuous case, this
is also

xn
Pu(x1,xz)=f f fia(u1, w2 )duydiey (2.15)

where f(us, #2) is now the joint density. In general, adding random variables con-
siderably complicates the characterization of the density or distribution functions.

The analysis simplifies considerably if the variables are independent. In this
case, the joint density separates out into the product of the densities:

fialuizn) = filug) x foluz) (2.16)

and the integral reduces to

Fia(x1, x2) = Fi(x1)} x Fafoa) (2.17)
This is very convenient because we only need to know the individual densities
to reconstruct the joint density. For example, a credit loss can be-viewed as a
combination of (1) default, which is a random variable with a value of one for
default and zero otherwise, and {2) the exposure, which is a random variable
representing the amount at risk, for instance the positive market value of a swap..
If the two variables are independent, we can construct the distribution of the credit
loss easily. In the case of the two dice, the events are indeed independent. As a
result, the probability of a joint event is simply the product of probabilities. For
instance, the probability of throwing two ones is equal to 1/6 x 1/6 = 1/36.
It is also useful to characterize the distribution of x; abstracting from x;. By
integrating over all values of x3, we obtain the marginal density

filz) = [  fralsn, 12y (2.18)

and similarly for x5, We can then define the conditional density as

fralx | x) = fatx, %) (2.19)
f2{x2)
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Here, we keep x; fixed and divide the joint density by the marginal probability
of x). This normalization is necessary to ensure that the conditional density is a
proper density function that integrates to one. This relationship is also known as
Bayes’ rule.

2.2.2 CGopuias

When the two variables are independent, the joint density is simply the product
of the margial densities. It is rarely the case, however, that financial variables are
independent. Dependencies can be modeled by 2 function called the copula, which
links, or attaches, marginal distributions into a joint distribution. Formally, the

copula is a function of the marginal distributions F (x}, plus some parameters, 9,

that are specific to this function (and not to the marginals). In the bivariate case,
it has two arguments

ci2[Filx1), Fa(xz); 6] (2.20)

The link between the joint and margmal distribution is made explicit by Sklar’s
theorem, which states that, for any joint density, there exists a copula that links
the marginal densities

fizlxi,x) = filxn) x fal%) x cralFi (%), Falxa); 6] " (2.21)

With independence, the copula function is a constant always equal to one.

Thus the copula contains all the information on the nature of the dependence
between the random variables but gives no information.on the marginal distri-
butions. Complex dependencies can be modeled with different copulas. Copulas
are now used extensively for modeling financial instruments such as collaterafized
debt obligations (CDOs). As we shall see in a later chapter, CDOs involve move-
ments in many random variables, which are the default events for the companies
issuing the debt.

2.2.3 Covariances and Correlations

When dealing with two random variables, the comovement can be described by
the covariance

CoviXy, X2) =012 = /f[xl ~ EG)lx — ECO)] fialxr, m)dmdny  (2.22)
1J2 '
Tt is often useful to scale the covanance mto a unitless. number, called the correla-

tion coefficient, obtained as

CoviX;, X
P, Xy = OV ) (2.23)

c102

The correlation coefficient is a measure of linear dependence. One can show that
the correlation coefficient always lies in the [— 1, +1] interval. A correlation of one
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means that the two variables always move in the same direction. A correlation of
minus one means that the two variables always move in opposite direction.

If the variables are independent, the joint density scparates out and this be-
comes

Cov(¥z, X5) = ‘fl[xl — E{X))] fl(xl)dxl} l[l[xz — EGG) fztxl)dxz} =0

by Equation {2.6), since the average deviation from the mean is zero. In this case,
the two variables are said to be uncorrelated. Hence independence implies zero
correlation (the reverse is not true, however).

Consider two variables, such as the exchange rates for the Canadian dollar and
the curo. Table 2.3a describes the joint density function fia(x1, %), assuming
two payoffs only for each variable. Note first that the density indeed sums to
0.30 +020+0.15+0.35 =1.00.

TABLE 2.33  joint Density Function

Xy

X3 -5 +5
-10 0.30 0.15
+10 a.20 0.35

From this, we can compute the marginal density for each variable, along with
its mean and standard deviation. For instance, the marginal probability of x; = =5
isgiven by filx1) = fua(x, 0 = —10) + fia(x, 2 = +10) = 0.30 + 0.20 = 0.50.
The marginal probability of x; = +5 must be 0.50 as well. Table 2.3b shows
that the means and standard deviations are, respectively, & = 0.0, g1 = 5.0, and
% =1.90,03 = 9.95.

Finally, Table 2.3c details the computation of the covariance, which gives
Cov = 15.00. Dividing by the product of the standard deviations, we get p =
Cov/{o102) = 15.00/(5.00 x 9.95) = 0.30. The positive correlation indicates that
when one variable goes up, the other is more likely to go up than down.

TABLE 2.88  Marginal Density Functions

Variable 1 Variable 2
Prob. Mean Variance Prab. Mean Variance
Xy Alx)y  xmAlx)  m-@Pfim) m fAlm) mhlk) (e J_Cz)lfz(xz)
-5 050 2.5 12.5 10 045 —45 54.45
+3 0.50 +2.5 12.5 +10 0.55 +5.5 4455
Sum  1.00 0.0 25.0 Sum  1.00 1.0 99.0

H =00 g, =50 H=10 gy =9.95




X =—5 x1=+5

¥ =-10 (=5 -0}{~10-1)0.30 = 16.50 (+5 - 0)(—10 —1)0.15 = —8.25
=410 (~5-0)(+10-1)020=-900 (+5— 0){+10 - 1)0.35 = 15.75

Sum - Cov=15.00

EXAMPLE 2.1: FRM EXAM 2000—QUESTION 81 7

Which ‘one of the following statements about the correlation coefficient is
false?

a. It always ranges from ~1 to +1.

b. A correlation coefficient of zero means that two random variables are
independent.

c. It is a measure of linear relationship between two random variables.

d. It can be calculated by scaling the covariance between two random
variables.

EXAMPLE 2.2: FRM EXAM 2007 —QUESTION 93

The joint probability distribution of random variables Xand Y is given by
flx,y) =k xxx yforx=1,2,3,y=1,2,3, and kis a positive constant.
What is the probability that X ++ Y will exceed §?

a. 1/9
h. 1/4
c. 1/36
d. Cannot be determined

2.3 FUNGCTIONS 8F RANDOM VARIABLES

Risk management is about uncovering the distribution of portfolio values. Con-
sider a security that depends on a unique source of risk, such as a bond. The risk
manager could model the change in the bond price as a random variable directly.
The problem with this choice is that the distribution of the bond price is not
stationary, because the price converges to the face value at expiration.
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Instead, the practice is to model the change in yields as a random variable
because its distribution is better behaved. The next step is to use the relationship
between the bond price and the yield to uncover the distribution of the bond
price.

This illustrates a general principle of risk management, which is to model the
risk factor first, then to derive the distribution of the instrument from information
about the function that tinks the instrument value to the risk factor. This may
not be easy to do, unfortunately, if the relationship is highly nonlinear. In what
follows, we first focus on the mean and variance of simple transformations of
random variables.

2.3.1 Linear Transformation of Random Variahlas

Consider a transformation that multiplies the original random variable by a con-
stant and add a fixed amount, Y = a + bX. The expectation of Y is

E(a+bX)=a+ bE(X) (2.24)
and its variance is
Via +bX) = P V{X) {2.25)

Note that adding a constant never affects the variance since the computa-
tion involves the difference between the variable and its mean. The standard
deviation s

SD{a + bX} = bSD(X} (2.26)

position in 1,000 million Japanese yen. The distribution of the dollar/yen exchange
rate X has a mean of E(X) = 1/100 = 0.01 and volatility of SD{(X) = 0.10/100 =
0.001.

The portfolio value can be written as Y = a + bX, with fixed parameters
{in millions) ¢ = $1 and b= Y1,000. Thercfore, the portfolio expected value
is E{Y)=$1+ Y1,000 x 17100 = $11 million, and the standard deviation is
SD(Y) = Y1, 000 x 0.001 = $1 million.

2.3.2 Sum of Random Varizhles

Another useful transformation is the summation of two random variables. A
portfolio, for instance, could contain one share of Intel plus one share of Microsoft.
The rate of return on each stock behaves as a random variable.

W, TRADIN@=-SOFTW 2 RE-COLLECTION. COM
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The expectation of the sum Y = Xy + Xz can be written as
EX) + Xo) = E(Xq) + E(X) (2.27)
and its variance is

VIXi + X3) = VX)) + V(X2) + 2Cov(¥q, X2) (2.28)

When the variables are uncorrelated, the variance of the sum reduces to the sum
‘of variances. Otherwise, we have to account for the cross-product term.

2,3.3 Porttolios of Random Variables

More generally, consider a linear combination of a number of random variables.
This could be a portfolio with fixed weights, for which the rate of return is

N
Y= Z w,—X,- (2-29)

where N is the number of assets, X; 1s the rate of return on asset 7, and w; its
weight.

“To shorten nozation, this can be writren in matrix notation, replacing a string
of numbers by a single vector:

Y=wu X Tw X+ -+ wnXy = [w;wz...wN] : =uw'X (2.30)

where v’ represents the transposed vector (i.e., horizontal) of weights and X is the
vertical vector containing individual asset returns. The appendix for this chapter
provides a brief review of matrix multiplicarion.

The portfolio expected return is now

N
E(Y) = iy = ) winy (2.31)
i=1
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which is a weighted average of the expected returns p; = E(X;). The variance is

N N N N N N
VIY) = o’ = 2.2 )y = 2,149
(Y)y=0,=) wio; + wiwjo;; = ) wiof +2 ) ) wiw;oi]
i=1 i=1 j=1,j7#i i=1 i=1 j<i

(2.32)

Using matrix notation, the variance can be written as

o1 12 013 --- OIN un
2
Jp=[w1...wN]

oM ONz 9N3 .-+ ON_ LWN

Defining T as the covariance matrix, the variance of the portfolio rate of
return can be written more compactly as

ot =uw'Tw (2.33)
P

This is a useful expression to describe. the risk of the total portfolio.

Consider a portfolio invested in Canadian dollars and euros. The joint density
function is given by Table 2.3a. Here, x; describes the payoff on the Canadian dol-
lar, with sy = 0.00, o1 = 5.00, and o = 25. For the curo, 2 = 1.00, o, = 9.95,
and o = 99. The covariance was computed as oy = 15.00, with the correlation
p = 0.30. If we have 60% invested in Canadian dollar and 40% in euros, what is
the portfolio volatility?

Following Equation (2.33), we write

) 25 157[0.607 25 x 0.60 + 15 x 0.40
oy = 1060 0.40] [15 99] [0.40 = 10600401 15 0.60+ 99 x 0.40
o2 = 10.60 0401 | 21%0] = 0.60 x 21.00 + 0.40 x 48.60 = 32.04

Therefore, the portfolio volatility is ap = ~/32.04 = 5.66. Note that this 1s hardly
higher than the vofatility of the Canadian dollar alone, even though the risk of the
euro is much higher. The portfolio risk has been kept low due to a diversification
effect, or low correlation between the two assets.

2 3.4 Product of Random Variables

Some risks result from the product of two random variables. A credit loss, for
instance, arises from the product of the occurrence of default and the loss given

default.
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Using Equation {2.22), the expectation of the product ¥ = X; X» can be
written as

E(Xi X3) = E()E(Xz) + Cov(Xy, X3} {2.34)

When the variables are independent, this reduces to the product of the means.
The variance is more complex to evaluate. With independence, it reduces to:

VIXi X3) = E(XG)2V0G) + VI)ECS) + VX)) VEG) (2.35)

2.3.5 Distributions of Transformations of RVs

The preceding results focus on the mean and variance of simple transforma-
tions only. They do not fully describe the distribution of the transformed variable
Y = g(X). This, unfortunately, is usually complicated for all bur the simplest trans-
formations g(-) and densities fX).

Even if there is no closed-form solution for the density, we can describe the
cumulative distribution function of Y when &(X} is a one-to-one transformation
from X into Y. This implies that the function can be mverted, or that for a given
¥y we can fitid x such-that x' = g=1(3). We can then write

PIY < y]=PlelX) < y] = P[X < g7 (3)] = Fx(g!(y)) (2.36)

where F(-) is the cumulative distribution function of X, Here, we assumed the rela-
tionship s positive. Otherwise, the right-hand term is changed to 1 — Fx(g~!(y)).

This allows us to derive the quantile of, say, the bond price from information
about the probability distribution of the yield. Suppose we consider a zero-coupon
bond, for which the market value V s

100

Ny (2.37)

where r is the yield. This equation describes V as a function of 7, or Y = g(X).
Using 7 = 6% and T = 30 years, the current price is V = $17.41. The inverse

function X =g~ 1(Y) is
r=(100/ V)T _1 (2.38)

We wish to estimate the probability thar the bond price could fall below a cut-
off price V = §15. We invert the price-yield function and compute the associated
yield level, g7 {y) = (100/$15)"7% — 1 — 6.528%. Lower prices are associated
with higher yield levels. Using Equation (2.36), the probability is given by

PV <$15] = P[r > 6.528%]
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Probability density function

$5 - §$to - $15 - $20  $25  $3> 835
Bond price

FISURE 2.5 Depsicy Function for the Bond Price

Assummg thc yxcld change is normal with volatility 0.8%, this gives a prob-
.abxhty of 25.5 percent.! Even though we do not know the density of the bond
price, this method allows us to trace out its cumulative distributicn by changing
the cufoff pnce of $15. Taking the derivative, we can recover the density function
of thé Bond price. Figure 2.5 shows that this p.d.f. is skewed to the right.
'On the extieme right, if the yield falls to zero, the bond pncc will go to $100.
On the extreme lefi, if the vield goes to infinity, the bond price will fall to, but
not go below, zero. Relative to the current value of $17.41, there is a greater
likelihood of large movements up than down.
This method, unfortunately, cannot be easily cxtcnded For general density
mnct:ons ‘and transformatmns, risk managers turn to numerical methods, espe-
B c1ally when the number of random variables is large. This is why credit risk models,
Eormgt‘ance 1 describe the distribution of credit losses thtgBgh Sittations.

. EXAMPLE 2.3: FRM EXAM 2007—GUESTION 127

Suppose that A and B dre random variables, each follows a standard normal
distribution, and the covariance between A and Bis 0.35. What is the variance
of (3A+2B)?

a. 1447
b. 17.20
¢ 9.20

d. 15.10

1%We shall see later that this is obtained from the standasd normal variable z = (6.528 -
6.000}/0.80 = 0.660. Using standard normal tables, or the NORMSDIST(~-0.660} Excel function,
this gives 25.3%.
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EXABIPLE 2.4: FRY ENAM 2002—QUESTIGH 70

Given that x and y are random variables, and a, b, ¢ and d are constant,
which one of the following definitions is wrong.

a. Elax + by 4 ¢} = aB(x) + bE(y) + ¢, if x and y are correlated.

b. V{ax + by + ¢) = Viax + by) +c, if x and y are correlated.

¢ Covlax + by, cx + dy) = acV(x) + bdV(y) + {ad + be)Covix, ), if =x
and y are correlated. )

d V(x— y) V(x + y) Vix} -+ V(y), if ¥ and y are uncorrelated.

w

2. 4 IMPGBTANT DISTBIBIITION FUNBTIBNS

2.4.1: Hmrnrm Blstrihution

The. mmplest contlnuous djsmbunon function is the uniform distribution. This is
defined over a range of values for x, a < x < b. The density function is

flx)= (bi) a<x<b (2.39)

which is constant and indeed integrates to unity. This distribution puts the same

weight on each. observatxon wzthm the allowable range, as shown in Figure 2.6.
Wc,dcngxc,ms distribution as U(a, b).

Freduéncy

a ’ b
Realization of the uniform random variable

FIBURE 2.6 Uniform Density Function
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Its mean and variance are given by

By =" er b (2.40)
vog = ;2“)- (2.41)

The uniform distribution U(Q, 1) is widely used as a starting distribution for
generating random variables from any distribution F(Y) in simulations. We need
to have analytica! formulas for the p.d.f. f{Y) and its cumulative distribution
E(Y). As any cumulative distribution function ranges from zero to unity, we first
draw X from U{0, 1) and then compute y = F~!(x). The random variable Y will
then have the desired distribution f(Y).

EXAMPLE 2.5: FRM EXAM 2002—CGQUESTION 119

The random variable Xwith density function f(x) = 1/{b — a}fora < x < b,
and 0 otherwise, is said to have a uniform distribution over (a, b). Calculate
its mean.

(a -+ b)/2
.a-—-0f2
.a+ bf4
ca-—b/4

& n oo

2.4.2 Nermal Distribution

. Perhaps the most important continuous distribution is the normal distribution,
which represents adequately many random processes. This has a bell-like shape
with more weight in the center and tails tapering off to zero. The daily rate of
retugn in a stock price, for instance, has a distribution similar to the normal p.d.f.

The normal distribution can be characterized by its first two moments only, the
mean x and variance o2. The first parameter represents the location; the second,
the dispersion. The normal density function has the following expression:

1 1
) = s exp{—fﬁ(x—mz} (2.42)

Its mean is E{X] = p and variance V[X] = o?. We denote this distribution as
Nijt, 52). Because the function can be fully specified by these two paramcters, it
is called a parametric function.

Instead of having to deal with different parameters, it 1s often more conve-
nient to use a standard normal variable as ¢, which has been standardized, or
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TABLE 2.1 Lower Quantiies of the Standardized Normal Distribution

Confidence Level (percent}
99.99 99.9 99 97.72 97.5 95 90 84.13 50
cl-e) -3.715 -3.090 -2.326 -2.000 -1.960 —1.645 -1.282 —1.000 —0.000

normalized, so that Efe) = 0, V(¢) = o(¢) = 1. Figure 2.7 plots the standard nor-
mal density.

First, note that the function is symmetrical around the mean. Its mean of zero is
the same as its mode (which is also the most likely, or highest, point on this curve)
and median {which is such that the area to the left isa 50 percent probability).
The skewness of a normal distribution is 0, which indicates that it is symmetrical
around the mean. The kurtosis of a normal distribution is 3. Distributions with
fatter tails have a greater kurtosis coefficient.

About 95% of the distribution is contained between values of ¢y = —2 and
€ =42, and 68% of the disteibution falls between values of ¢ = —1 and
€, = +1. Table 2.4 gives the values that correspond to right-tail probabilities,

such that
/00 fle)de = ¢ (2.43)

For instance, the value of —1.645 is the quantile that corresponds to a 95%

probability.”
This distribution plays a central role in finance because it represents adequarely
the behavior of many financial variables. It enters, for instance, the Black—Scholes

Frequency

68% of the
distribution

95% s

' between
/ -2 and 42 \
- +
: i E T

—4 -3 =2 -1 [¢] 1 2 3 4
Healization of the standard normal random variable

FIGHRE 2.7 Normal Density Function

! More generally, the cumulative disteibution can be found from the Excel function NORMDIST(-).
For example, we can verify that NORMSDIST{—1.645) yields 0.04999, or a 5% left-tail probability.
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option pricing formula where the function N{-) represents the cumulative stan-
dardized norma! distribution function.

The distribution of any normal variable can then be recovered from that of
the standard normal, by defining

X=p+eo (2.44)

Using Equations {2.24) and {2.25), we can show that X has indeed the desired
moments, as E{X) = u + E{e}o = p and V(X == Vielo? =a’.

Define, for instance, the random variable as the change in the dollar value
of a portfolio. The expected value is E(X) = p. To find the quantile of X art the
specified confidence level ¢, we replace € by —a in Equation (2.44). This gives
O(X, c) = u — «o. Using Equation (2.9}, we can compute VAR as

VAR=EX)- OX,c)=p - (4 —ac)=co {2.45)

For example, 2 portfolio with a standard deviation of $10 million would have a
VAR, or potential downside loss, of $16.45 million at the 5% confidence level.

An important property of the normal distribution is that it 1s one of the few
distributions that is stable under addition. In other words, 2 linear combination
of jointly normally distributed random variables has a normal distribution.® This
is extremely useful because we only need to know the mean and variance of the
portfolio to-reconstruct its whele distribution.

3Surictly speaking, this is only true under cither of the following condinons: (1) the univariate
variabies are ndependently distributed, or (2} the variables are multivariate rormally distributed
{this 1nvariance property also holds for poindy elliptically distributed variabies).
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When e have N random variables, the joint normal density can be written
as a function of the vector x, of the means p, and the covariance matrix :

i 1
fleg, -, xn) = W cxp[——z-(x —uY¥(x— ‘u)} (2.46)

Using the concept of copulas, this can be separated into N different marginal

normal densities and a joint normal copula. For two random variables, Equation
{2.21) showed

fualx, 2) = filx) x folxa) x cial Fi(x), Falxa); 6]

Here, both f and f; are normal marginals. They have parameters /; and gy, and
#2 and ;. In addition, ¢y is the normal copula. Note that its sole parameter is
the correlation coefficient pq5. This additional information is required to construct
the covariance matrix ¥ and defines the strength of the dependency between the
two variables.

EXAMPLE 2.6: FRM EXAM 2005—QUESTION 62

Let Z be a standard normal random variable. An event Xis defined to happen
if either Z takes a value between —0.5 and 0.5 or Z takes any value greater
than 1.5. What is the probability of event X happening if N(0.5} = 0.6915
and N(~1.5) = 0.0668, where N{.) is the cumulative distribution function
of a standard normal variable?

a. 0.2583
b. 0.3753
c. 0.4498
d. 0.7583

EXAMPLE 2.7: FRRT EXAM 2063-—QUESTION 21

Which of the following statements about the normal distribution is 76f ac-
curate?

a. Kurtosis equals 3.
b. Skewness equals 1.

c. The entire distribution can be characterized by two moments, mean and
varmnce.

d. The normal density function has the following expression: f(x) =

Zoz expl g (x — p)?)

T A e s s ot T
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EXAMPLE 2.8: FRM EXAM 2006—QUESTION 11

Which type of distribution produces the lowest probability for a variable to
exceed a specified extreme value which is greater than the mean, assuming
the distributions all have the same mean and variance?

2. A leptokurtic distribution with a kurtosis of 4
b. A leptokurtic distribution with a kurtosis of 8

c. A normal distribution
d. A platykurtic distribution

2.4.3 Lognormal Distribution

The normal distribution is a good approximation for many financial variables,
such as the rate of return on a stock, r = (P1 — Po)/ Po, where Po and Py are the
stock prices at time 0 and 1. '

Strictly speaking, this is inconsistest with reality since a normal variable has
infinite tails on both sides. In theory, r could end up below —1, which implies
Py < 0. In reality, due to the limited liability of corporations, stock prices cannot
turni negative. In many situations, however, this is an excellent approximation.
For instance, with short horizons or small price moves, the probability of having
a negative price js so small thar it is negligible. If this is not the case, we need
to resort to other distributions that prevent prices from going negative. One such
distribution is the lognormal.

A random variable X is said to have a lognormal distribution if its logarithm
Y = in(X) is normally distributed. Define here X = {P;/Pp). Because the argu-
ment X in the logarithm function must be positive, the price Py can never go
below zero. ’

The lognormal density function has the following expression

fix) =

1
exp| —=——(In{x) — u)l], x>0 (2.47)
xv2wa? p[ 20?
Note that this is more complex than simply plugging In{x) in Equation (2.42},
because x also appears in the denominator. Its mean is

E[X] =exp {u + %azj\ (2.48)
and variance V[X] = exp[2p + 201 — exp{2u + o?]. The parameters were cho-
sen to correspond to those of the normal variable, E[Y] = E{In{X)] =y and
VY] = ViIn(X)} = al.

Conversely, if we set E[ Xj = explr], the mean of the associated normal vari-
ableis E[Y] = E{ln{(X)] = (v - a*/2). We will see later that this adjustment is also
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Freguency
— Sigma=1
- Sigma=1.2
—— Sigma=0.6
o 1 2 3 4 5 5 7 8 8 10

Realization of the lognormal random variable

FIRURE 2.8 Lognoumal Density Function

used in the Black-Scholes option valuation model, where the formula involves a
trend in {r — 02/2} for the log-price ratio.

Figure 2.8 depicts the lognormal density function with u =0, and various
values o = 1.0; 1.2, 0.6. Note that the distribution is skewed to the right. The tail
increases for greater values of o. This explains why as the variance increases, the
mean is pulled up in Equation {2.48).

We also niote that the distribution of the bond price in our previous example,
Equation (2.37), resembles a lognormal distribution. Using continuous compotind-
ing instead of annual compounding, the price function is

V =100 exp(—rT) {2.49)

which implies In(V/100) = —r T. Thus if r is normally distributed, V has a log-
normal distribution.

EXAMPLE 2.9: FRM EXAM 1993—QUESTION 5

Which of the following statements best characterizes the relationship between
the normal and lognormal distributions?

a. The lognormal distribution is the logarithm of the normal distribution.

b. If the natural log of the random variable X is lognormally distributed,
then X is notmally distributed.

c. If X is lognormally distributed, then the natural log of X is normally
distributed.
d. The two distributions have nothing to do with one another.
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EXAMPLE 2.10: FRM EXAM 2007—QUESTION 21

The skew of a lognormal distribution is always

a. Positive

b. Negative
c. 0
d. 3

EXAMPLE 2.11: FRM EXAM 2002—CQUESTION 125

Consider a stock with an initial price of $100. kts price one year from now is
given by § = 100 x exp(r), where the rate of return 7 is normally distributed
with a mean of 0.1 and a standard deviation of 0.2. With 95% confidence,
after rounding, § will be between

a. $67.57 and $147.99
b. $70.80 and $149.20
c. $74.68 and $163.56
d. $102.18 and $119.53

EXAMPLE 2.12: FRM EXAM 2000—QUESTION 128

For a lognormal variable X, we know that In{X) has a normal distribution
with 2 mean of zero and a standard deviation of 0.5. What are the expected
value and and the variance of X?

a. 1.025 and 0.187
b. 1.126 and 0.217
c. 1.133 and 0.365
d. 1.203 and 0.399
Cretemmze: TN

2.4.4 Stedent’s § Bistribution

Another important distribution is the Student’s ¢ distribution. This arises in hy-
pothesis testing, because it describes the distribution of the ratio of the estimated
coefficient to its standard error.
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This distribution is characterized by a parameter k known as the degrees of
freedom. Its density is '

T+ 1)/2) 1 1

flx)= MR T (T 2R (2.50)

where I is the gamma function, defined as (k) = f0°° x*le~xdx. As k mncreases,
this function converges to the normal p.d.f.
The distribution is symmetrical with mean zero and variance

k
provided & > 2. Its kurtosis is
6
§=3+ m (252)

provided & > 4. Its has fatter tails than the normal which often provides a better
representation of typical financial variables. Typical estimated values of k are
around four to six for stock returns. Figure 2.9 displays the density for & = 4
and k = 50. The latter is close to the normal. With b = 4, however, the p.d.f. has
fatter tails. As was done for the normal density, we can also use the Student’s ¢ to
compute VAR as a function of the volaility

VAR = o4 (2.53)

where the multiplier now depends on the degrees of freedom &.
As for the multivariate normal distribution, the joint Student distribution can
be separated into two components, The marginals have the Student’s distribution

- Frequency

1 2 3
Realization of the Student's  random variable

HGURE 2.8 Student's ¢ Density Function
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described in Equation (2.50). In addition, the copula has a specific shape, which
is the Student’s copula. This copula allows for stronger dependencies in the tails
than the normal copula. Marginals and copulas of different types can be used, as
best fits the data. For example, one could use normal marginals and a Student’s
copula. This creates substantial flexibility in the statistical modeling of random
variables.

Another distribution derived from the normal is the chi-square distribution,
which can be viewed as the sum of independent squared standard normal variables

k
x=Y 2 (2.54)

=1

where k is also called the degrees of freedom. Its mean is E[X] =k and vari-
ance V[X] = 2k. For k sufficiently large, x*(k) converges to a normal distribution
N{k, 2k}. This distribution describes the sample variance.

Finally, another associated distribution is the F distribution, which can be
viewed as the ratio of independent chi-square variables divided by their degrees
of freedom

_xMa)la
x2(b)/b

F(a,b) (2.55)

This distribution appears in joint tests of regression coefhcients.

EXAMPLE 2.13: FRM EXAM 2003—QUESTION 18

Which of the following statements is the most accuzate about the relationship
between a normal distribution and a Student’s ¢-distribution that have the
same mean and standard deviation?

a. They have the same skewness and the same kurtosis.

b. The Student’s ¢-distribution has larger skewness and larger kurtosis.

c. The kurtosis of a Student’s ¢-distribution converges to that of the normal
distribution as the number of degrees of freedom increases.

d. The normal distribution is a good approximation for the Student’s ¢-
distribution when the number of degrees of freedom is small.

2.4.5 Binomial Bistribution

Consider now a random variable that can take discrete values between zero and
1. This could be, for instance, the number of times VAR js exceeded over the last
year, also called the number of exceptions. Thus, the binomial distribution plays
an important role for the backtesting of VAR models.
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A binomial variable can be viewed as the result of 7 independent Bernoulii
trials, where each trial results in an outcome of ¥ = 0 or y = 1. This applies, for
example, to credit risk. In case of default, we have y = 1, otherwise y = 0. Each
Bernoulli variable has expected value of E[Y] = p and variance V[Y] = p(1 — p).

A random variable is defined to have a binomial distribution if the discrete
density function is given by

flx) = (:) prl-p", x=0,1,...,n {2.56)

where (7) is the number of combinations of # things taken x at a time, or

n 1!
(x) T Xn- x)! (257)

and the parameter p is between zero and one. This distribution also represents
the total number of successes in 7 repeated experiments where each success has a
probability of p.

The binomial variable has mean and variance

E{X} = pn (2.58)
VIX] = p(1— pjn {2.59)

It is described in Figure 2.10 in the case where p = 0.25 and # = 10, The proba-
bility of observing X=10,1,2...is5.6%, 18.8%, 28.1% and so on.

For mnstance, we want to know what is the probability of observing x =0
exceptions out of a sample of # = 250 observations when the true probability is
1%. We should expect to obscrve 2.5 exceptions on average across many such
samples. There will be, however, some samples with no exceptions at afl. This

Frequency
3

it .
0 1 2 3 4 5 6 7 § 3 10
Realization of the binomial random variahle

FIGHRE 2.10  Binomial Density Function with p = 0.25, 2= 10
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probability is

” N ax 2301 0 09250 _
pH(L = p) = —=0.01°0.9957 = 0.081

flX=0) =

x!{n — x)!

So, we would expect to observe 8.1% of samples with zero exceptions, under the
null bypothesis. We can repeat this calculation with different values for x. For
example, the probability of observing 8 exceptions is f(X = 8) = 0.02 % only, We
can use this information to test the null hypothesis. Because this probability is so
low, observing 8 exceptions would make us question whether the true probability
is 1%.

EXAMPLE 2.14: FRM EXAM 2006 —QUESTION 84

On a multiple-choice exam with four choices for each of six guestions, what
is the probability that a student gets fewer than two questions correct simply
by guessing?

. 0.46%

..23.73%
. 35.60%
. $3.39%

O n O

2.4.6 Poisson Distribution

The Poisson distribution is a discrete distribution, which typically is used to de-
scribe the number of events occurting over a fixed period of time, assuming events
are independent of each other. It is defined as

e—l x

x=0,1,... (2.60)

flx) =

xt

whére X is a positive number representing the average arrival rate during the
period. This distribution, for example, is widely used to represent the frequency,
or number of occurrences, of operational losses over a year.

The parameter A represents the expected value of X and also its variance

E[X] = (2.61)
V[X] =2 (2.62)

The Poisson distribution is the limiting case of the binomial distribution as n goes
to infinity and p goes to zero, while #p = 4 remains fixed. In addition, when &
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is large the Poisson distribution is well approximated by the normal distribution
with mean and variance of , through the central limit theoren.

If the number of arrivals follows a Poisson distribution, then the time period
between arrivals follows an exponential distribution with mean 1 /. The latter
has density taking the form f(x) = Ae™*, for x > 0. For example, if we expect
A =12 losses per year, the average time interval between losses should be 1 year
divided by 12, or one month.

EXAMPLE 2.15: FRM EXAM 2004—QUESTION 60

When can you use the normal distribution to approximate the Poisson dis-
tribution, assuming yon have # independent trials each with a probability of
success of p

a. When the mean of the Poisson distribution is very small
b. When the variance of the Poisson distribution is very small

¢. When the number of observations is very large and the success rate is
closeto 1

d. When the number of observations is very large and the success rate is
close to 0

2.5 LIMIT DISTRIBUTIONS

2.5.1 Distribution of Averages

The normal distribution is extremely important because of the central limit theo-
rem (CLT), which states that the mean of » independent and identically distributed
variables converges to a normal distribution as the number of observations s in-
creases. This very powerful result is valid for any underlying distribution, as long
as the realizations are independent. For instance, the distribution of total credit
losses converges to a normal distribution as the number of loans increases to a
large value, assuming defaults are always independent of each other.

"Define Xas the mean L 37 | X, where each variable has mean u and standard
deviation ¢, We have

2
X N (M, 5_) (2.63)

Standardizing the variable, we can write

X~nu
(0//7)

— N{0, 1) (2.64)
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Thus, the normal distribution is the limiting distribution of the average, which
explain why it has such a prominent place in statistics.

As an example, consider the binomial variable, which is the sum of independent
Bernoulli trials. When  is large, we can use the CLT and approximate the binomial
distribution by the normal distribution. Using Equation {2.64) for the sum, we
have

em— P N, (2.65)
p{1— pin

which is much easier to evaluate than the binomial distribution.

Consider for example the issue of whether the number of exceptions x we
obsexve is compatible with a 99% VAR. For our example, the mean and variance of
x are E[X] = 0.01x250=2.5 and V[X] = 0.01{1 — 0.01) x 250 = 2.475. We
observe x = 8, which gives z= (8 — 2.5)/+/2.475 = 3.50. We can now compare
this number to the standard normal distribution. Say for instance that we decide
to reject the hypothesis that VAR is correct if the statistic falls outside a 93%
two-tailed confidence band.* This interval is (—1.26, +1.96) for the standardized
normal distribution. Here, the value of 3.50 is much higher than the cutoff point
of +1.96. As a result, we would reject the null hypothesis that the true probability
of observing an exception is 1% only. In other words, there are simply too many
exceptions to be explained by bad luck. It is more likely that the VAR model
underestimates risk.

2.5.2 Distribution of Tails

The CLT deals with the mean, or center of the distribution. For risk management
purposes, it is also useful to examine the tails of the distribution.

Another powerful theoremis given by extreme value theory (EVT). The EVT
theorem says that the limit distribution for values x beyond a cutoff point u
belongs to the following family

F)=1— (1507, £4£0

(2.66}
Fly)=1-expl=y), £=0

where y = (x — )/$. To simplify, we define the loss x as a positive number so that
y is also, positive, The distribution is characterized by g > 0, a scale parameter,
and by £, a shape parameter that determines the speed at which the tail disappears.
This distribution is called the Generalized Pareto Distribution, because it sub-
sumes other distributions as special cases. For instance, the normal distribution
corresponds to § = 0, in which case the tails disappear at an exponential speed.
Typical financial dara have £ > 0, which implies fat tails. This class of distribution

4 Note that the choice of this confidence level has nothing to do with the VAR confidence level. Here,
the 95% level represents the rate at which the decision rule will commit the erros of falsely rejeciing
a correct model.
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rrequency

EVT density Normal density
£=02

1 H 1 ¥ 1
] 2 4 6
Realization of the-random variable

HEURE 2.11  EVT and Normal Densities

includes the Gumbel, Fréchet, and Weibull families, as £ — 0, £ > 0,and £ < 0,
respectively.

Figure 2.11 illustrates the shape of the density function for U.S. stock market
data. The normal density falls off fairly quickly. With& = 0.2, the EVT density has
a fatter tail than the normal density, implying a higher probability of experiencing
large losses. This is an important observation for risk management purposes. Note
that the EVT density is only defined for the tail, i.e., when the loss x exceeds an
arbitrary cutoff point, which is taken as 2 in this case.

EXAMPLE 2.16: FRM EXAM 2007—QUESTIEN 110

Which of the following statements regarding extreme value theory (EVT) is
incorrect?

a. In contrast to conventional approaches for estimating VAR, EVT only
considers the tail behavior of the distribution,

b. Conventional approaches for estimating VAR that assume that the dis-
tribution of returns follows a unique distribution for the entire range of
values may fail to propezly accouitt for the fat tails of the distribution of
returns. ' "

c. EVT attempts to find the optimal point beyond which all values belong
to the tail and then models the distribution of the tail separately.

d. By smoothing the tail of the distribution, EVT effectively ignores extreme
events and Josses that can generally be labeled outliers.
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2.5 IVPORTANT FORMULAS

Probability density function: f(x) = Prob{X = x)
(Cumulative) distribution function: F(x) = 7 flu)du
Mean: E(X) = g = [ xf(x)dx

Variance: V(X)= o2 = [lx = pP f(x)dx

Skewness: y = (f {x — p)? flx)dx) fo?

Kurtosis: § = (f[x — p]* f(x)dx) fo”

Quantile, VAR: VAR = E(X}) — QiX,c) = ao
Independent joint densities: fi2(x2x) = fi{x) X fa(x2)
Marginal densities: f1(x) = [ fizlxi, w2 )doy,

12(x1, %)
2lxz}

Copula, Sklar’s theorem: fia{x1, %) = filx1) x falx2) X cr2{Fr(m), Fy{x2); 6]
Covariance: 012 = f; flx1 — pallx2 — 2] frdxady
Correlation: p12 = o12/{0102)

Conditional densities: fia{x1 | x2) =

Linear transformation of random variables: E{a + bX) = a + bE(X),
Via + 56X} = PP V(X), o(a+bX) = bo(X)
Sum of random variables: EQ + X)) = ,u1. + pa,
ViXi+ X3) = ‘712 +0} 42013
Portfolios of random variables: Y = w'X, E(Y}=p, = vy, 0’;‘ =wIw
Product of random variables: E(X; Xa) = pipa + 012,
V(X Xp) = plo? + olpl + oo}
Uniform distribution: E(X) = &3¢, V() = &2
Normal distribution: E{X} = ¢, V(X} = o2, y=08=3
Lognormal distribution: for Xif Y = In{X} is normal, E[X] = exp [u+ %az] ,
- VIX] = exp[2u + 20%] — exp[2u + o)
Student’s ¢ distribution: V{X] = Ff_z! y=08=3+ ﬁ
Binomial distribution: E{X] = pn, V[X] = p(1 — p)n
Poisson distribution: E[X] =X, V[X]=1
Distribution of averages (CLT): X —» N (,u,, Eﬂf)

Distribution of tails (EVT): y = (x —%)/8 — Generalized Pareto distribution

2.7 ANSWERS T0 CHAPTER EXAMPLES

Example 2.1: FRES Exam 2000—QGuastisn 81

b. Correlation is a measure of linear association. Independence implies zero cor-
relation, but the reverse is not always true.
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Example 2.2: FRM Exam 2087-—fuestion 53

b. The function x x y is described in the following table. The sum of the entriés is
36. The scaling factor k must be such that the total probability is one. Therefore,
we have k = 1/36. The table shows one instance where x + y > 5, which is x =
3, y = 3. The probability is p = 9/36 = 1/4.,

]xxy x=1 2 3
y=1 P 2 3
2 2 4 6
3 3 6 9

Example 2.3: FRM Exam 2007—Question 127

b. The variance is V(34 + 2B) = 3VIA) + 22V(B) + 2 x 32 Cov(A,B)=91+
414+12x035=17.2.

Example 2.4: FRM Exam 2002—0Question 70

b. Statement a. is correct, as it is a linear operation. Statement c. is correct,
as in Equation (2.32). Statement d. is correct, as the covariance term is zero if
the variables are uncorrelated. Statement b. is false, as adding a constant ¢ to a
variable cannot change the variance. The constant drops out because it is also in
the expectation.

Example 2.5: FRM Exam 2002—Question 119

a. The mean is the center of the distribution, which is the average of # and b.

Example 2.6: FRM Exam 2005—Question §2

c. The event is the sum of the probabilities P(0.5 < Z < +0.5) and P{Z >
+1.5). Given the symmetry of the normal distribution, or that N{d) =
1~ N{-—d), this gives P{—0.5 < Z < +0.5) =2P{0 < Z < +0.5) = 2(P(Z <
+0.5) — 0.5) = 2(N{0.5) — 0.5} = 2(0.6915 — 0.5} =0.3830and P(Z > +1.5) =
N(—1.5) = 0,0668. The sum is 0.4498.

Example 2.7: FRW Exam 2003—Question 21

b. Skewness is 0, kurtosis 3, the entire distribution is described by 1 and o, and
the p.d.f. is correct.

Example 2.8: FRM Exam 2006—guestion 11

d. A platykurtic distribution has kurtosis fess than 3, less than the normal p.d.f.
because all other answers have higher kurtosis, this produces the lowest extreme
values.
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Example 2.9: FEM Fxam 1885 —Questien &

c. X is said to be lognormally distributed if its logarithm Y = In{X) is normally
distributed.

Example 2.10: FARM Exam 2007—Question 21

a. A lognormal distcibution is skewed to the right. Intuitively, if this represents the
distribution of prices, prices can fall at most by 100% but can increase by more
than that.

Example 2.11; FRM Exam 2002—Question 125

c. Note that this is a two-tailed confidence band, so that o = 1.96. We
find the extreme values from $100exp(p + ¢o’). The lower limit is then Vi =
$100exp(0.10 — 1.96 x 0.2) = $100exp(—0.292) = $74.68. The upper limit is
Vy = $100exp(0.10 -+ 1.96 x 0.2) = $100exp(0.492) = §163.56.

Example 2.12: FRM Exam 2000—Question 128

c. Using Equation (2.48), we have E[X] = exp[p +0.507] = exp{0+ 0.5 ¥ 0.5%] =
1.1331. Assuming there is no error in the answers listed for the variance, it is
sufficient to find the correct answer for the expected value.

Exampie 2.13: FRM Exam 20063—Question 18

c. The two distributions have the same skewness of zero but the Student’s ¢
has higher kurtosis. As the number of degrees of freedom increases, the Student
converges to the normal, so c. is the correct answer.

Example 2.14: FRM Exam 2006—Question 84

d. We use the density given by Equation (2.56). The number of trials is 7 = 6. The
probability of guessing correctly just by chance is p = 1/4 = 0.25. The probability
of zero lucky guesses is (5)0.25%0.756 = 0.75% = 0.17798. The probability of one
lucky guess is (§)0.2510.75° = 6 0.25 0.75° = 0.35596. The sum is 0.5339.

Note that the same analysis can be applied to the distribution of scores
on the FRM examination with 140 questions. It would be virtually impos-
sible to have a score of zero, assuming random guesses; this probability is
0.7514% = 3 2E — 18 Also, the expected percentage score under random guesses
is. p =25%.

Fxample 2.15: FRM Exam 2604—Question 60

¢. The normal approximation to the Poisson improves when the success rate, 2
is very high. Because this is also the mean and variance, answers a. and b. are
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wrong. fn turn, the binomial density is well approximated by the Poisson density
when #p = A is large.

Exampie 2.16: FRM Exam 2007—0Question 110

d. EVT only uses information in the tail, so statement a. is correct. Conventional
approaches such as delta-normal VAR assume a fixed p.d.f. for the entire distri-
bution, which may understate the extent of fat tails. So, statement b. is correct.
The first step in EVT is to choose a cutoff point for the tail, then to estimate the
parameters of the tail distribution, so statement c. is correct, Finally, EVT does
not ignore extreme events (as long as they are in the sample).

APPENDIX: REVIEW OF MATRIX MULTIPLICATION

This appendix briefly reviews the mathemarics of matrix multiplication. Say that
we have two matrices, A and B that we wish to multiply to obtain the new matrix
C = AB. The respective dimensions are (# x m) for A, that is, # rows and m
columns, and {(m x p) for B. The number of columns for A must exactly match
{or conform) to the number of rows for B. If so, this will result in 2 matrix C of
dimensions (r x p).

We can write the matrix A in terms of its individual components a;;, where
denotes the row ard j denotes the column:

411 a1 ... diy

a1 a2 )

As an illustration, take a simple example where the matrices are of dimension
{2x 3)and (3 x 2).

r
a ai a

A= 11 3
a4y an  dy

(b1 by2]

B=|by by
[&31 by
C:AB:[C“ Clljl
€1 €2

To multiply the matrices, each row of Ajis multiplied element-by-element by cach
column of B. For instance, ¢y; is obtained by taking

bi»
co=lan an  a]|bn | = auby +anby +apbs

b32
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The matrix C is them:

_anbu + apbn +aibs  aubn +anbn + flub_u:l
ay by + anba +asbs  anbu +anbp +anby

Matrix multiplication can be easily implemented in Excel using the function
MMULT. First, we highlight the cells representing the output matrix C, say f1:g2.
Then we enter the function, for instance MMULT(a1:c2; d1:e3), where the first
range represents the first matrix A, here 2 by 3, and the second range represents the
matgix B, here 3 by 2. The final step is to hit the three keys Control-Shift-Return
sitnultaneously.






ﬁandamema!s of Statistics

The preceding chapter was mainly concerned with the theory of probability,
including distribution theory. In practice, researchers have to find methods to
choose among distributions and to estimate distribution parameters from real
data. The subject of sampling brings us now to the theory of statistics. Whereas
probability assumes the distributions are known, statistics attempts to make in-
ferences from actual data.

Here, we sample from the distribution of a population, say the change in the
exchange rate, to make inferences about the population. The questions are, what is
the best distribution for this random variable and what are the best parameters for
chis distribution? Risk measurement, however, typically deals with large numbers
of random variables. So, we also want to characterize the relationships between
the risk factors to which the portfolio is exposed. For example, do we observe that
movements in the yen/dollar rate are correlated with the dollarfeuro rate? Another
type of problem is to develop decision rules to test some hypotheses, for instance
whether the volatility remains stable over time.

These examples illustrate two important problems in statistical inference, Le.,
estimation and tests of hypotheses. With estimation, we wish to estimate the value
of an unknown parameter from sample data. With tests of hypotheses, we wish
to verify a conjecture about the data.

This chapter reviews the fundamental tools of statistics theory for risk man-
agers. Section 3.1 discusses the sampling of real data and the construction
of returns. The problem of parameter estimation is presented in Scction 3.2.
Section 3.3 then turns to regression analysis, summarizing important results as
well as common pitfalls in their interpretation. '

3.1 REAL DATA

To start with an example, let us say that we observe movements in the daily
yen/dollar exchange rate and wish to characierize the distribution of tomorrow’s
exchange rate.

The risk manager’s job is to assess the range of potential gains and losses on a
trader’s position. He or she observes a sequence of past spot prices So, S1, .- -+ St
from which we have to infer the distribution of tomorrow’s price, Se+1.

67
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3.1.1 HMeasuring heturns

The truly random component in tomorrow’s price is not its level, but rather its
change relative to today’s price. We measure the relatipe rate of change in the spot
price: e

e =(S; = 8;1)/81-1 (3.1)
Alternatively, we could construct the logarithm of the price ratio:

R =In[$;/S;_1] (3.2)

which is equivalent o using continuous instead of discrete compounding. This is
also

Re=In[14(S$, - St-1)/8:-1]= In[1 + 7t}

Because In(1 4 x} is close to x if x is small, R, should be close to r, provided the
return is small. For daily data, there is typically little difference between R, and ry.

The return defined so far is the capital appreciation return, which ignores the
income payment on the asset. Define the dividénd or coupon as D;. In the caise of
an exchange rate position, this is the interest payment in the foreign currency over
the holding periéd. The total return on the asseti§ I

v

rXOT — (5, 4 D — 8}/ 3:3)

When the hérizon is very short, the income return is typically very small compared
to the capital appreciation return.

The next question is whether the sequence of variables r, can be viewed as
independént observations. If so, one could hypothesize, for instance, that the
random variables are drawn from a aormal distribution N{u, 02}. We could then

proceed to estimate g and o2 from the data and use this information to creaté a -

disttibution for tomorrow’s spof pricé change, L _

':‘Q.Z'I—ndébén;jé';i‘t obsérizatic')‘ns',haxié:théfﬁgry hice property that their joint'distribu--
" tiof {5 the product of théir marginal disiiibutior, which considérably simplifiés the
analysis. The obvious question is whether this assuinption is a workable approx-
imation. In fact, there are good economic reasons to believe that:rates of change
on financial prices are close to independeri.

The hypothesis of efficient markets postulates that current prices convey all
relevant information about the asset. If s0, any change in the asset price must be
due to niews, or évents which ate by definition impossible to forecast {otherwise,
it would not be news). This implies that changes in prices are unpredictable and,
hence, satisfy our definition of independent random variables.

This hypathesis, also known as the random walk theory, implies that the
conditional distfibution of returns depefids only on current prices; and not on the
previous history of prices. If so, technical analysis must be a fruitless exercise.
Technical analysts try to forecast price movements from past price patterns.
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If in addition the distribution of returns is constant over time, the vanables
are said to be independently and identically distributed {i.i.d.). So, we could con-
sider that the observations ; are independent draws from the same distribution
Nip, o?).

Later, we will consider deviations from this basic model. Distributions of
financial returns typically display fat tails. Also, variances are not constant and
display some persistence; expected returns can also slightly vary over time.

2.1.2 Time Aggreyatien

It is often necessary to translate parameters Over a given horizon to another
horizon, For example, we may have raw data for daily returns, from which we
compute a daily volatiliry thar we want to extend to a monthly volatility.

Returns can be easily related across time when we use the log of the price
ratio, because the log of a product is the sum of the logs of the individual terms.
The two-day return, for example, can be decomposed as

Roz = InlS2/50) = n{(82/81) x (S1/50)) = InfS1/S0] + In[$;/S1] = R + Rpz
(3.4)

This decomposition is only approximate. if we use discrete returns, however.

The expected return and variance are then E(Rg2) = E(Ro1) + E(Ri12) and
V{(Rg2) = V(R ) + V{Ri2) + 2Cov{Rg;, Ryz). Assuming returns are uncorrelated
and have identical distributions across days, we have E{Rg2) = 2E(Ry) and

V{Rg2) = 2V(Ro1)-
Generalizing over T days, we can relate the moments of the T-day returns Rr
to those of the 1-day returns Ry:

E(Rr) = E{R)T (3.5)
V(Rr) = V(R)T (3.6)

Expressed in terms of volatility, this yields the square root of time rule:

SD(Ry) = SD{ROVT (3.7)

More generally, the variance can be added up from different values across
different periods. For instance, the variance over the next year can be computed as
the average monthly variance over the first three months, multiplied by 3, plus the
average variance over the last nine months, multiplied by 9. This type of analysis
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is routinely used to construct 4 term structure of implied volatilities, which are
derived from option data for different maturities.

It should be emphasized that this holds only if returns have constant parame-
ters across time and are uncorrelated. When there Is non-zero correlation acrosg
days, the two-day variance is

V(R)) = V(Ri) + V(Ry) + 2pV(Ry) = 2V(Ry)(1 + p) (3.8)

Because we are considering cosrelations in the time series of the same variable, o
is called the autocorrelation coefficient, or the serial autocorrelation coefficient. A
positive valee for p implies that a movement in one direction in one day is likely to
be followed by another movement in the same direction the next day. A positive
autocorrelation signals the existence of a trend. In this case, Equation (3.8) shows
that the two-day variance is greater than the one obtained by the square root of
time rule.

A negative value for p implies that a movement in-one direction in one day
is likely to be followed by a movement in the other direction the next day. So,
prices tend to revert back to a mean value, A negative autocorrelation signals

. EXAMPLE 3.1: FRM EXAM 1889—QUESTION 4

A fundamental assumption of the random walk hypothesis of market returns
is that returns from one time period to the next are statistically independent. L
This assumption implies

0

+ Returns from one time period to the next can never be equal.

=

- Returns from one time period to the next are uncorrelated.

[g)

- Knowledge of the returns from one time peried does not help in predict-
ing returns fromi the next time period.

d. Both b} and c¢) are true.

EXAMPLE 3.2: FRM EXAM 2002—QUESTION 3

Consider 2 stock with daily returns that follow a random walk. The annuaj-
ized volatility is 34%. Estimate the weekly volatility of this stock assuming
that the year has 52 webks. o

a. 6.80%
b. 5.83%
c. 4.85%
d. 4.71%
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— - : )
EXAMPLE 3.3: FRM EXAM 2002—QUESTION 2

Assume we calculate a one-week VAR for a natural gas position by rescal-
ing the daily VAR using the square-root rule. Let us now assume that we

determine the true gas price process to be mean-reverting and recalculate the
VAR.
Which of the following statements is true?

a. The recalculated VAR will be less than the original VAR.
b. The recalculated VAR will be equal to the original VAR.
c. The recalculated VAR will be greater than the original VAR.

d. There is no necessary relation between the recalculated VAR and the
original VAR.

N

mean reversion. In this case, the two-day variance is less than the one obtained by
the square root of time rule.

3.1.3 Portiolio Aggreyation

Let us now turn to aggregation of returns across assets. Consider, for example, an
equity portfolio consisting of investments in N shares. Define the number of each
share held as g; with unit price S;. The portfolio value at time is then

N
W=y qiSis (3.9)
i=1

We can write the weight assigned to asset'i as

Wi, = H—q';" (3.10)
3

which by construction sum to unity. Using weights, however, rules out situations
with zero net investment, W} = 0, such as some derivatives positions. But we could
have positive and negative weights if short selling s allowed, or weights greater
than one if the portfolio can be leveraged.

The next period, the portfolio value is

N
Wigr = ) giSise1 (3.11)
i=1
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assuming thar the unit price incorporates any incomc payment. The gross, or

dollar, return is then

N
W = W= 3 " gilSi0q1 ~ §i)

=1

and the rate of return is

(3.12)

(3.13}

So, the portfolio rate of return is a linear combination of the asset returns

N
Tosl = Z Wiy Pyl

i=1

The dollar return is then

N
Wer1 — W = [Z wi.z?‘i,r+1:’ W

i=1

(3.14)

(3.15)

and has a norma! distribution if the individual returns are also normally dis-

tributed.,

Alternatively, we could express thé individual positions in dollar térms,

X% =wi, W= q:8i.¢

The doliar return is also, using dollar amounts,

. N
Wi -W= [Z x{.r?'i,rﬂ}

i=1

{3.16}

(3.17)

As we have seen in the previous chapter, the variance of the portfolio dollar

return is

VWit — W= ¥'Tx

expected return and variance. The porifolio VAR is then
VAR = avx'Zx

where & depends on the selected density function.

(3.18)

Because the portfolio follows a normal distribution, it is fully characterized by it

{3.19)
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7 1

EXAMPLE 3.4: FRM EXAM 2004—(QUESTISH 33

Consider a portfolic with 40% invested in asset X and 60% invested in asset
Y. The mean and variance of return on X are 0 and 25, respectively. The
mean and variance of return on Yare 1 and 121, respectively. The correlation
coefficient between X and Y is 0.3. What is the nearest value for portfolio
volatility?

a. 3.51
b. 8.60
c. 13.38
d. 7.45

e I T R

3.2 PARAMETER ESTIMATION

Armed with our i.i.d. sample of T observations, we can start estimating the pa-
rameters of interest, such as the sample mean, the variance, and other moments.

2.2.1 Distribution n! Estimates

As in the previous chapter, define x; as the realization of a random sample. The
expected return, or mean, jt = E{X) can be estimated by the sample mean,

=~

1 T
m=fE=m) % (3.20)
i=1

Intuitively, we assign the same weight of 1/T to all observations because they all
Liave the same probability. The variance, o2 = E[(X - 1£)*], can be estimated by
the sample variance,

‘ 1 <
2"_’&-2_ 7_*-2
s$-=0 _(T“-l)zl{x‘ i) {(3.21)

Note that we divide by T — 1 instead of T. This is because we estimate the variance
around an unknown parameter, the mean. So, we have fewer degrees of freedom
than otherwise. As a result, we need to adjust 52 to ensure that its expectation
equals the true value. In most situations, however, T is large so that this adjustment
iS 1ENOr.

It is essential to note that these estimated values depend on the particular
sample and, hence, have some inherent variability, The sample mean itself is
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distributed as
m=0~ Nlu,o¥/T) (3.22)

If the population distribution i normal, this exactly describes the distribu-
tion of the sample mean, Otherwise, the central limit theorem states that this
distribution is only valid asymptotically, i.e., for large samples.

For the distribution of the sample variance 2, one can show that, when X is
normal, the following ratio is distributed as a chi-square with (T — 1) degrees of
freedom

B2 yT- (3.23)

If the sample size T is large enongh, the chi-square distribution converges to a
normal distribution:

g2 ~ N(al, ol ) (3.24)

(T—-1)

Using the same approximation, the sample standard deviation has a normal dis-
tribution with a standard error of

se{c) = a]/% {3.25)

We can use this information for hypothesis testing. For instance, we would
like to detect a constant trend in X, Here, the null hypothesis is that =0.To
answer the question, we use the distributional assumption in Equation (3.22) and
compute a standard normal variable as the ratio of the estimated mean to its
standard error, or

(m—0)

/T {(3.26)

Because this is now a standard normal variable, we would not expect to observe
values far away from zero. Typically, we would set the significance level ar 95 per-
cent, which translates into 2 two-tailed interval for zof[-1.96, +1.9¢). Roughly,
this means that, if the absolute value of z is greater than two, we would reject the
hypothesis that # came from a distribution with a mean of zero. We can have
some confidence thar the true p is indeed different from zero.

In fact, we do not know the true ¢ and use the estimated s instead. The
distribution is a Student’s ¢ with T degrees of freedom:

_ (m~0}
B s/\/f

(3.27)

for which the cutoff values can be found from tables. For large values of T,
however, this distribution is close to the normal.
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We want to characterize movements in the monthly yen/dollar exchange rate
from historical data, taken over 1990 to 1999. Returns are defined in terms
of continuously compounded changes, as in Equation (3.2). The sample size is
T = 120, and estim?ted_parameters arem = —0.28% and s = 3.55% {pet month).

Using Equation (3.22), the standard error of the mean is approximately
se{m) = s/VT = 0.32%. For the null of p= 0, this gives a t-ratio of t=
mjse(m) = —0.28%/0.32% = —0.87.- Because this number is less than 2 in ab-
solute value, we cannot reject the hypothesis that the mean is zero at the 95%
confidence level. This is a typical result for financial series. The mean is not pre-
cisely estimated.

Next, we-turn to the precision in the sample standard deviation. By Equation

{3.25), its standard error is se(s) = a‘/;—% = 0.229%. For the null of ¢ = 0, this
gives 2 ratio of z = s/se(s) = 3.55%/0.229% = 15.5, which is very high. So, the
volatility is not zero. Therefore, there is much more precision in the measurement
of 5 than in that of 1.

Furthermore, we can construct 95% confidence intervals around the estimated

values. These are:

= [—0.92%, +0.35%)]

[m — 1.96 x se(m), m+1.96 x se{m)] =
)] =1[3.10%, 4.00%]

[s — 1.96 x se(s), s +1.96 x sels

So, we could be reasonably confident that the volatility is between 3% and 4%,
but we cannot even be sure that the mean 1s different from zero.

3.2.2 Choosing Significance Levels for Tests

Hypothesis testing requires the choice of a significance level, which needs careful
consideration. Two types of errors can arise, as described in T able 3.1. A type 1
error involves rejecting a correct model. A type 2 error involves accepting an
incotrect model. For a given test, increasing the significance level will decrease the
probability of a type 1 error but increase the probability of a type 2 error. Thus,
the choice of the significance leve! should reflect the cost of each of these errors.
This type of situation arises, for example, when a risk manager or regulator
must decide whether to accept 2 VAR model. The first step is to record the number
of exceptions, or losses worse than VAR forecasts constructed at the 99% level

TABLE 3.1 Decision Errots

Modet
Decision: Correct Incorrect
Aecept OK Type 2 error

Reject Type 1 error OK
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EXAMPLE 3.6: FRM EXAM 2007—QUESTION 2

Which of the following statements regarding hypothesis testing is incorrect?

a. Type Il error refers to the failure to reject the null hypothesis when it is
actually false,

b. Hypothesis testing is used to make infarences about the parameters of a
given population on the basis of statistics computed for a sample that is
drawn from that population.

c. All else being equal, the decrease in the chance of making a type I error
comes at the cost of increasing the probability of making a type Il error.

d. The p-value decision rule is to reject the null hypothesis if the p-value is
greater than the significance level.

TS e ]

3 3 BEEHESSIUH ANAI.YSIS

' Regressmn analy31s has particular importance for risk management, because it can
be used to explain and forecact financial variables.

3.3.1 Bivariate Regression

In a linear regression, the dependent variable y is projected on 2 set of N prede-
termined independent variables, x. In the simplest bivariaze case we write

y: = o + Bx; + €, t=1,...,T (3.28)

where a is called the intercept, or constant, 8 is calied the slope, and ¢ is called
the residual, or error term. This could represent a time-series or 2 cross-section.
The ordinary least squares (OLS) assumptions are

x The errors are independent of x.

v The errors bave a normal distribution with zero mean and constant variance,
conditional on x.

» The errors are independent across observations.

Based on these assumptions, the usual methodology is to estimate the coeffi-
cients by minimizing the sum of squared errors. Beta is estimated by

AT — 1) X% — Xy — 9)
AT =] (e — x)?

(3.29)

i=Y;
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where ¥ and § correspond to the means of x, and ¥ Alpha is estimated by
@=y—px (3.30)

Note that the numerator in Equation (3.29) is also the sample covariance
between two series x; and x;; which can be written as

T
—~ 1 ~ — ;
Tij = (T __"1“) Z{xt.i = ;) ~ 1i}) (3.31)

=1

To interpret 8, we can take the covariance between y and x, which s

Cov(y, x) = Covie + Bx + ¢, x) = BCov(x, x) = BV{(x)
because ¢ is conditionally independent of x. This shows that the population 8 is

also

Cov(y,x)  ply, x)o(y)o{x) o(y)
Bly, x) = V) - pr = (,x)m (3.32)

The regression fit ‘can be assessed by examining the size of thé residuals,
obtained by subtracting the fitted values 3 from y,

&=3n-Y=n-ad—px (3.33)

and taking the estimated variance as
. 1 Az N
V() = ——2).26: (3.34)

We divide by T — 2 because the estimator uses two unknown quantities, & and 3.
Also note that, because the regression includes an intercept, the average value of
€ has to be exactly zero.

The quality of the fit can be assessed using a unitless mesdsure called the
regression R-square, also called coéfficient of determination. This is defined as

SSE &2
RRml- Sy L™ 3.35
SSY . v —3)? (3-35)

where SSE is the sum of squared errors, and S8Y is the sum of squared deviations
of y around its mean. If the regression includes a constant, we always have 0 <
R? < 1.Tnthis case, R-square is also the square of the usual correlation coefficient,

R = p(y, x)? (3.36)

The R? measures the degree to which the size of the errors is smaller than that
of the original dependent variables y. To interpret R2, consider two extreme cases.
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On one hand, if the fit is excellent, all the ecrors will be zero, and the numeraror
in Equation {3.35) will be zero, which gives R? = 1. On the other hand, if the fit
is poor, $SE will be as large as SSY and the ratio will be one, giving R* =

Alternatively, we can interpret the R-square by decomposing the variance of
y, = & + Bx + €,. Because € and x are uncorrelated, this yields

Viy) = 2V(x) + Vie) (3.37)
Dividing by V(y),

_ BV Ve

31.38
7o) V) (3.38)

Because the R-square is also R? =1 — Vi{e)/ V(y), it is equal to = B2 V(x)/ V(y},
which is the contribution in the variation of y due to § and x.

Finally, we can derive the distribution of the estimated coefficients, which
is normal and centered around the true values. For the slope coefficient, B~
N(B, V(B)), with variance given by ‘

N 1
Vip) = Vt?)————m—z P {3.39)

This can be used to test whether the slope coefficient is significantly different from
zero. The associated test statistic

t = Bl (p) (3.40}

has a Student’s ¢ distribution. Typically, if the absolute value of the statistic is:
above 2, we would reject the hypothesis that there is no relationship between y
and x. This corresponds to a two-tailed significance level of 5%.

3.3.2 Autoregression

A particularly useful application is a regression of a variable on a lagged value of
itself, called autoregression

y=mat B ten  1=1,...,T (3.41)

If the B coefficient rs significant, previous movements in the variable can be used
to predict future movements. Here, the coefficient 8, is known as the kth-order
autocorrelation coefficient.

" Consider for instance a first-order autoregression, where the daily change m.
the yen/dollar rate is regressed on the previous day’s value. A positive coefficient B,
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indicates a trend. A negative coefficient indicates mean reversion. As an example,
assume that we find that A, = 0.10, with zero intercept. One day, the yen goes up
by 2%. Our best forecast for the next day is another upmove of

E[:}'t+1] B ﬁl)’f - 0.1 X 2%2 0.2%

Autocorrelation changes normal patterns in risk across horizons. When there
is no autocorrelation, risk increases with the square root of time. With positive
autocorrelation, shocks have a longer-lasting effect and risk increases faster than
the square root of time.

3.3.3 Muitivariate Regression
More generally, the regression in Equation (3.28) can be written, with N indepen-
dent variables:
% o2 a3z ... x| B €1
| s+ (3.42)

yr Tt ¥ ¥y ... ] [ B €T

This can include the case of a constant when the first column of X is a vector of
ones, it which case 8, is the usual «. In matrix notation,

y=XB+e (3.43)
The estimated coefficients can be written in matrix notation as

B = (XX XYy (3.44)

and their covariance matrix as

V(B) = o} e} X' X)™! (3.45)

We can extend the #-statistic to a multivariate environment. Say we want to
test whether the last m coefficients are jointly zero. Define B, as these grouped
coefficients and V,,(B) as their covariance matrix. We set up a statistic

o B VlBY By

SSEAT - N) (3.46)

which has an F-distribution with 77 and T— N degrees of freedom. As before,
we would reject the hypothesis if the valie of F is too large compared to critical
values from tables.
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3.3.4 Example

This section gives the example of a regression of a stock return on the market.
Such analysis is commonly used to assess whether movements in the stock can be
hedged using stock-market index futures.

We consider 10 years of data for Intel and the S&P 500, using toral rates of
return over a month. Figure 3.1 plots the 120 combination of returns, or (), x;)-
Apparently, there is a positive relationship between the two variables, as shown
by the straight line that represents the regression fit {3, x).

Table 3.2 displays the regression results. The regression shows a positive rela-
tionship between the two variables, with B = 1.349. This is significantly positive,
with a standard error of 0.229 and t-statistic of 5.90. The #-statistic is very high,
with an associated prabability value (p-value) close to zero. Thus, we can be fairly
confident of a positive association between the two variables.

This beta coefficient is also called systematic risk, or exposure to general
market movements. Typically, technology. stocks have greater systematic risk than

TABLE 3.2 Regression Results
y =& + fx, y = Intel return, x = S&P return

R-square 0.228
Standard crror of y - 10.94%
Standard ercor of € 9.62%

Cocfficient Fetimate  Standard Error  To-statistic P-value

Intercept & 0.0168 (.0094 178 077
Intercept 8 1.349 0.229 5.90 0.00
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the average. Tndeed, the slope in Intel’s regression is greater thau unity. To test
whether B is significantly different from 1, we can compute a z-score as

_(B-1)_ (349-1)
T os(f) 0229 =153

This is less than the usual cutoff value of 2, so we cannot say for certain that
Intel’s systematic risk is greater than one.

The R-square of 22.8% can be also interpreted by examining the reduction
in dispersion from y to €, which is from 10.94% to 9.62%. The R-square can be
written as 4 '

r_ | 962%

- m - 22.8[%)

Thus, about 23% of the variance of Intel’s returns can be attributed to the market.

EXAMPLE 3.7: FRM EXAM 2004—QUESTION 4

Consider the following linear regression model: Y =a + & X+ e. Suppose
a =003, b=1.2, SD(Y) = 0.26, SD(e) = 0.1, what is the correlation be-
tween X and Y?

a. 0.923
b. 0.852
c. 0.701°
d. 0.462

EXAMPLE 3.8: FRM EXAM 2007—QUESTION 22

Consider two stocks, A and B. Assume their annual returns are jointly nor-
mally distributed, the marginal distribution of cach stock has mean 2% and
standard deviation 10%, and the correlation is 0.9. What is the expected
annual return of stock A if the annual return of stock B is 3%:?

a. 2%
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EXAMPLE 3.9: FRM EXAM 2004—QUESTION 23

Which of the following statements about the linear regression of the return
of a portfolio over the return of its benchmark presented below are correct?

Portfolio parameter Value
Beta 1.25
Alpha 0.26

Coefficient of determination | 0.66
Standard deviation of error | 2.42

I. The correlation is 0.71.
II. 34% of the variation in the portfolio return is explained by variation in
the benchmark return.
HI. The portfolio is the dependent variable.
IV. For an estimated portfolio return of 12%, the confidence interval at 95%
is (7.16% to —16.84%}).
a. Hand IV
b. Il and IV
c. 1,1, and III
d. I, I, and IV

3.3.5 Pitfalls with Regressions

As with any quantitative method, the usefulness of regression analysis depends
on the underlying assumptions being fulfilled for the problem at hand. Potential
problems of interpretation are now briefly mentioned.

The original OLS setup assumes that the X variables are predetermined {i.e.,
exagenous or fixed), as in a controled experiment. In practice, regressions are
performed on actual, existing data that do not satisfy these strict conditions. In
the previous regression, returns on the S&P are certainly not predetermined.

If the X variables are stochastic, however, most of the OLS results are still
valid as long as the X variables are distributed independently of the errors and
their distribution does not involve g and al.

Violations of this assumption are serious because they create biases in the slope
coefficients.-Biases could lead the researcher to come to the wrong conclusion. For
instance, we could have measurement ¢rTors in the X variables, which causes the
measured X to be correlated with ¢. This so-called ervors in the variables problem
causes a downward bias, or reduces the estimated slope coefficients fromi their
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true values. Note that errors in the y variables are not an 1ssue, because they are
captured by the error component «.

A related problem is that of specification error. Suppose the true model has
N variables but we only use a subset N;. If the omitted .variables are correlated
with the included variables, the estimated coefficients will be biased. This is a very
serious problem because it is difficult to identify. Biases in the coefficients cause
problems with estimation.

Another class of problems has to do with potential biases in the standard
errors of the coefficients. These errors are especially serious if standard errors are
underestimated, creating a sense of false precision in the regression results and
perhaps leading to the wrong conclusions. The OLS approach assumes that the
errors are independent across observations. This is generally the case for financial
time series, but often not in cross-sectional setups, For instance, consider a cross-
section of mutual fund returns on some attribute. Mutual fund families often have
identical funds, except for the fee structure {e.8., called A for a front load, B for
a deferred load). These funds, however, are invested in the same securities and
have the same manager. Thus, their returns are certainly not independent. Ff we
run a standard OLS regression with all funds, the standard errors will be too
small becanse we overestimate the number of independent observations. More
generally, one has to-check that there is no systematic correlation pattern in the
residuals. Even with time series, problems can arise with autocorrelation in the
errors. Biases in the standard errors cause problems with inference, as one could
conclude erroneously that a coefficient is statistically significant.

Problems with efficiency arise when the estimation does not use all available
information. For instance, the residuals can have different variances across ob-
servations, in which case we have heteroskedasticity. This is the opposite of the
constant variance case, or homoskedasticity. Conditional heteroskedasticity oc-
curs when the variance is systematically related to the independent variables. For
instance, large values of X could be associated with high error variances. These
problems can be identified by diagnostic checks on the resid uals. If heteroskedas-
ticity is present, one could construct better standard €rrors, or try an alternative
specification. This is much less of a' problem than problems with estimation or
inference, however. Inefficient estimates do not necessarily create biases.

Also, regressions may be subject to multicollinearity. This arises when the
X variables are highly correlated. Some of the variables may be superfluous,
for example using two currencies that are fixed to each other. As a result, the
matrix (X' X) in Equation {3.44) will be unstable, and the estimated 8 unreliable.
This problem will show up in large standard errors, however. It can be fixed by
discarding $ome of the variables that are highly correlated with others.

Last, even if all the OLS conditions are satisfied, one has to be extremely
careful about using a regression for forecasting. Unlike physical systems, which
are inherently stable, financial markets are dynamic and relationships can change
quickly. Indeed, financial anomalies, which show up as strongly significant coef-
ficients in historical regressions, have an‘uncanny ability to disappear as soon as
one tries to exploit them.
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EXAMPLE 3.10: FRM EXAM 2004—QUESTION 59

Which of the following statements regarding linear regression is false?

a. Heteroskedasticity occurs when the variance of residuals is not the same
across all observations in the sample.

b. Unconditional heteroskedasticity leads to inefficient estimates, whereas
conditional heteroskedasticity can lead to problems with both inference
and estimation.

c. Serial correlation occurs-when the residual terms are correlated with
each other.

d. Multicollinearity occurs when a high correlation exists between or
among two or more of the independent variablesina multiple regression.

EXAMPLE 3.11: FRM EXAM 1393—QUESTION 2

Under what circumstances could the explanatory power of regression analysis
be overstated?

a. The explanatory variables are not correlated with one another.

b. The variance of the error term decreases as the value of the dependent
variable increases.

c. The ervor term is normally distributed.

d. An important explanatory variable is omitted that influences the ex-
planatory variables included, and the dependent variable.

R = R X T L T

3.4 IMPORTANT FORMULAS

Discrete returns, log returns: r; = (8 ~ §p-1)/8-1, Re= m{S;/8:-1]
Time aggregation: E(Rr) = E(Ri)T, V(Rr) = V(R)T, SD{Ry) = SD{Ry VT
Portfolio rate of return, variance: 7p 1 = E,IL Wiy tige1 = WK,

Virpei) = w'iw

2 _

Estimated mean, variance: m=1 TE,_lx, s*=0 = 1)2 i — Ma

Distcibution of estimated mean, variance, standard deviation:m = L~
T-18* .2 ~2 s 2 o~ i
N, 0%/ T), S=U ~ (HT = 1), 8 = N(o? 0" 2 ) 5eB) = 0/ o
Bivariate, multivariate regression: y = & + Brité, y=XB+e¢
Estimated beta: B = (X'X)7' X'y
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i laris - . — Cov{rx) _ ply.xlaiviaix) _ , a_(}_']_
Population beta: gy, x) = Moo = e = Ay x}am

#2
Regression R-square: R? =1 — gg,_‘E( =1- f)(‘:;,—s_'yj
Lt

Variance decomposition: V(y) = g2V(x) + V (€)
T-statistic for hypothesis of zero coefficient: ¢ = B/o(B)

3.2 ANSWERS TO CHAPTER EXAMPLES

Exampie 3.1: FRM Exam 1839—qQuastion 4

d. Efficient markets implies that the distribution of future returns does not depend

-on past returns. Hence, returns cannot be correlated. It could happen, however,
that return di's‘t'ributions are independent, but that, just by chance, two successive
returns are equal.

Example 3.2: FRM Exam 2002—Question 3

d. Assuming a random walk, we can use the square root of time rule. The weekly
volatility is then 34% x 1/4/352 = 4.71%..

Example 3.3: FRM Exam 2002—Question 2

a. With mean reversion, the volatility grows more slowly than the square root
of time

Example 8.4: FRM Fxam 2004—Question 39

d. The variance of the portfolio is given by o} = {0.4)225 +(0.6)%121 +
2(0.4)(0.6)0.3 /25 x 121 = 55.48. Hence, the volatility is 7.45.

Example 3.5; FRM Exam 2007—0Question 137

c. The significance level is the probability of committing a type 1 error, or rejecting
a correct model. This is also P(reject HO | HO is true). On the other hand, the type:
2 error rate is P(not reject HO |.HO is false). |

Example 3.6: FRM Exam 2007—Questien 2

d. We would reject the null if the observed p-value is lower (not greater) than the
significance level.

Example 3.7: FRM Exam.2004—Question 4

a. We can find the volatility of X from the variance decomposition, Equation
(3.37). This gives V(x} = [V(y) - V(e)]/B% = {0.262 — 0.10%)/1.2% = 0.04. Then
SD(X) = 0.2, and p = BSD(X)/SD(Y) = 1.20.2/0.26 = 0.923.
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Example 3.8: FRM Exam 2007 —Guestion 22

b. The information in this question can be used to construct a regression model
of Aon B. We have Ry = 2% + 0.9{10%/10%){Rg — 2%) + ¢. Next, replacing
Rp by 3% gives Ry = 2% +0.9(3% — 2%) = 2.9%.

Example 3.8: FRM Exam 2004—Question 23

b. The correlation is given by +/0.66 = 0.81, so L is incorrect. Next, 66% of
the variation in Y is explained by the benchmark, so answer 11 is incorzect. The
portfolio return is indeed the dependent variable Y, so answer Ill. is correct.
Finally, to find the 95% two-tailed confidence interval, we use « from a normal
distribution, which covers 95% within plus or minus 1.96, close to 2.00. The
interval is then y — 28D{e}, ¥ 4 2SD{e}, or {7.16 — 16.84). So answers IIi. and IV.

are cofrect.

Example 3.10: FRM Exam 2004—UQuestion 39

b. Heteroskedasticity indeed occurs when the variance of the residuals 1s not
constant, so a. is correct. This leads to inefficient estimates but otherwise does not
cause problems with inference and estimation. Statements c. and d. are correct.

Exampte 3.11: FRM Exam 1999—Question 2

d. If the true regression includes a third variable z thar influences both y and x,
the error term will not be conditionally independent of x, which violates one of
the assumptions of the OLS model. This will artificially increase the explanatory
power of the regression. Intuitively, the variable x will appear to explain more of
the variation in y simply because it is correlated with z.
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Monte Garlo Methots

he two preceding chapters dealt with probability and statistics. The former

involves the generation of random variables from known distributions. The
second deals with estimation of distribution parameters from actual data. With
estimated disteibutions in hand, we can proceed to the next step, which is the
simulation of random variables for the purpose of risk management. Such simu-
lations, called Monte Carlo simulations, are central to financial engineering and
risk management. They allow financial engineer to price complex financial instru-
ments. They allow risk managers to build the distribution of portfolios that are
too complex to modef analytically.

Simulation methods are guite flexible and are becoming easier to implement
with technological advances in computing. Their drawbacks should not be under-
estimated, however. For all their elegance, simulation results depend heavily on
the model’s assumptions: the shape of the distribution, the parameters, and the
pricing functions. Risk managers-need to be keenly aware of the effect that errors
in these assumptions can have on the resuls.

This chapter shows how Monte Carlo methods can be used for risk manage-
ment. Section 4.1 introduces a simple case with jusi one source of risk. Section
4.2 shows how to apply these methods to construct value at risk (VAR) measures,
as well as to price derivatives. Multiple sources of risk are then considered in
Section 4.3.

/

4.1 SIMULATIONS WITH ONE RANDOM VARIABLE

Simulations involve creating artificial random variables with properties similar to
those of the risk factors in the portfolio. These include stock prices, exchange
rates, bond yields or prices, and commodity prices.

4.1.1 Simulating Markov Processes

In efficient markets, financial prices should display a random walk pattern. More
precisely, prices are assumed to follow a Markov process, which is a particular
stochastic process independent of its past history; the entire distribution of the
future price relies on the current price only. The past history is irrelevant. These

83
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processes are built from the following components, described in order of increasing
complexity.

& The Wiener process. This describes a variable Az, whesge change is measured
over the interval At suchthatits mean chan ge 1szexro and variance proportional
to Al

Az~ N(0, At) (4.1)

If € is a standard normal variable N(0, 1), this can be written as Az = e/ AL
In addition, the increments Az are independent across time.

® The generalized Wiener process. This describes a varjable Ax built up from
a Wiener process, with in addition a constant trend a per unit time and
volatility b:

Ax=alAt+bAz (4.2)

A particular case is the martingale, which is a zero drift stochastic process,
a =0, which leads to E(Ax) = 0. This has the convenient property that the
expectation of a future value is the current value

E(xr) = x9 | (4.3)

® The Ito process. This describes a genéralized Wiener process, whose trend and
volatility depend on the current value of the underlying variable and time:

Ax = a(x, t)At 4 blx, t) A7 (4.4)

This is a Markov process because the distribution depends only on the current
value of the random variable x, as well as time. In addition, the innovation in
this process has a normal distribution.

4.1.2 The Geometric Brownian Motiedn

A particular example of Ito process is the geometric Brownian.motion (GBM),
which is described for the variable S as

AS = uSAt+ aSAz (4.5)

The process is geometric because the trend and volatility terms are proportional
to the current value of §. This is typically the case for stock prices, for which rates
of returns appear t0 be more stationary thanraw dollar returns, AS. It is also used
for currencies. Because AS/S represents the capital appreciation only, abstracting

“from dividend payments, y represents the expected total rate of return on the asset

minus the rate of income payment, or dividend vield in the case of stocks.
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Consider a stock that pays no dividends, has an expected return of 10% per
annum, and volatility of 20% per annum. If the current price is $100, what is the
process for the change in the stock price over the next week? What if the current
price is $10?

The process for the stock price is

AS = S{pAt + oAt x€)

where € is a random drawn from a standard normal distribution. If the
interval is one week, or Af=1/52=0.01923, the mean is pAtr=0.10x
0.01923 = 0.001923 and g+/Af =.0.20 x +/0.01923 = 0.027735. The process
is AS = $100(0.001923 + 0.027735 x ¢). With an initial stock price at $100,
this gives AS = 0.1923 +; 2.7735¢. With an initial stock price at $10, this gives
AS = 0.01923 + 0.27735¢. The trend and volatility are scaled down by a factor
of 10. '

“This model is particularly important because it is the underlying process for
the Black—Scholes formula. The key feature of this distribution is the fact that the
volatility is proportional to S« This ensures that the stock price will stay posi